Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 29(13): 19525-19530, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266061

RESUMEN

We fabricated a fiber-optic directional coupler based on evanescent field coupling between side-polished large mode area (LMA) double clad fibers (DCFs) for a high power fiber laser. The tapping ratio of the fabricated coupler was measured to be - 32 dB. The fundamental mode coupled in a core of the lower side-polished fiber (SPF) was transferred to the upper SPF without clad-mode coupling. Two SPFs were directly faced to increase an optical handling power up to 740 W. The tapping ratio of the coupler was constantly maintained at the applied laser output. The beam quality of the laser including the fabricated coupler was maintained to be 1.22, without mode distortion by the coupler.

2.
Appl Opt ; 58(23): 6251-6256, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31503768

RESUMEN

We experimentally demonstrate an all-fiber high-power fiber amplifier with high beam quality and a slope efficiency of 81.8%, using a fiber-Bragg-grating-stabilized laser diode as a narrow spectral linewidth (0.08 nm) seed source. During amplification, the spectral linewidth of the laser output is broadened from 0.08 to 0.24 nm due to nonlinear phenomena. To the best of our knowledge, we report the first experimental observation of the suppression of stimulated Brillouin scattering (SBS), with increased output power. In addition, we investigated the SBS suppression by simultaneously measuring the optical backscattered power, backscattered spectrum, and output spectrum at different values of output power. The beam quality, M2, was measured to be ∼1.28 at the maximum output power of 2.05 kW, and modal instability was not observed.

3.
Opt Express ; 24(19): 21301-7, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661873

RESUMEN

We demonstrate an optically tunable graphene saturable absorber to manipulate the laser operation in pulsed fiber laser system. Owing to the strongly enhanced evanescent field interaction with monolayer graphene, we could realize an efficient control of modulation depth in the graphene saturable absorber by optical means through cross absorption modulation method. By integrating the tunable graphene saturable absorber into the fiber laser system, we could switch the laser operation from Q-switching through Q-switched mode-locking to continuous wave mode-locking by adjusting only the optical power of the control beam. In addition, we realized a hybrid Q-switching of fiber laser by periodical modulation of the absorption of the graphene saturable absorber, where we observed that the repetition rate of the Q-switched laser could be continuously tuned according to the modulation frequency of the applied external signal.

4.
Opt Express ; 24(13): 14152-8, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27410573

RESUMEN

We demonstrate an all-fiber Tm-doped soliton laser with high power by using a monolayer graphene saturable absorber (SA). Large area, uniform monolayer graphene was transferred to the surface of the side-polished fiber (SPF) to realize an in-line graphene SA that operates around 2 µm wavelength. To increase the nonlinear interaction with graphene, we applied an over-cladding onto the SPF, where enhanced optical absorption at monolayer graphene was observed. All-fiber Tm-doped mode-locked laser was built including our in-line graphene SA, which stably delivered the soliton pulses with 773 fs pulse duration. The measured 3-dB spectral bandwidth was 5.14 nm at the wavelength of 1910 nm. We obtained the maximum average output power of 115 mW at a repetition rate of 19.31 MHz. Corresponding pulse energy was estimated to be 6 nJ, which is the highest value among all-fiber Tm-doped soliton oscillators using carbon-material-based SAs.

5.
Opt Express ; 23(15): 19806-12, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367639

RESUMEN

We demonstrate an efficient all-fiber saturable absorber (SA) that evanescently interacts with a graphene monolayer. Strong nonlinear interaction between the graphene sheet and evanescent wave was realized in both experiments and numerical calculations by employing an over-cladding structure on high-quality monolayer graphene that uniformly covered the side-polished fiber. A passively mode-locked Er-doped fiber laser was built, including our in-line graphene SA, which stably generated ultrashort pulses with pulse duration of 377 fs at a repetition rate of 37.7 MHz. The corresponding 3-dB spectral bandwidth of the laser was measured to be 8.6 nm at the central wavelength of 1607.7 nm. We also experimentally observed that the spectral bandwidth and pulse duration of the laser output could be controlled by proper selection of the refractive index of the over-cladding material on the monolayer-graphene SA.

6.
Opt Express ; 23(20): 26234-42, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480136

RESUMEN

We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

7.
Opt Express ; 22(19): 23732-42, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321840

RESUMEN

Application of a multilayer Molybdenum Disulfide (MoS2) thin film as a saturable absorber was experimentally demonstrated by realizing a stable and robust passive mode-locked fiber laser via the evanescent field interaction between the light and the film. The MoS2 film was grown by chemical vapor deposition, and was then transferred to a side polished fiber by a lift-off method. Intensity-dependent optical transmission through the MoS2 thin film on side polished fiber was experimentally observed showing efficient saturable absorption characteristics. Using erbium doped fiber as an optical gain medium, we built an all-fiber ring cavity, where the MoS2 film on the side polished fiber was inserted as a saturable absorber. Stable dissipative soliton pulse trains were successfully generated in the normal dispersion regime with a spectral bandwidth of 23.2 nm and the pulse width of 4.98 ps. By adjusting the total dispersion in the cavity, we also obtained soliton pulses with a width of 637 fs in the anomalous dispersion regime near the lasing wavelength λ = 1.55 µm. Detailed and systematic experimental comparisons were made for stable mode locking of an all-fiber laser cavity in both the normal and anomalous regimes.


Asunto(s)
Disulfuros , Tecnología de Fibra Óptica/instrumentación , Grafito , Luz , Molibdeno , Diseño de Equipo , Gases , Láseres de Estado Sólido
8.
Opt Express ; 22(19): 22667-72, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321735

RESUMEN

We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Láseres de Estado Sólido , Luz , Nanotubos de Carbono/química , Diseño de Equipo
9.
Opt Express ; 21(22): 27011-6, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216924

RESUMEN

We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

10.
Nanomaterials (Basel) ; 13(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37110914

RESUMEN

We demonstrated a narrow-linewidth high-power Yb-doped polarization-maintaining (PM) fiber laser with near-diffraction-limited beam. The laser system consisted of a phase-modulated single-frequency seed source and four-stage amplifiers in the master oscillator power amplifier configuration. A quasi-flat-top pseudo random binary sequence (PRBS) phase-modulated single-frequency laser with a linewidth of 8 GHz was injected into the amplifiers for suppressing stimulated Brillouin scattering. The quasi-flat-top PRBS signal was readily generated from the conventional PRBS signal. The maximum output power was 2.01 kW with polarization extinction ratio (PER) of ~15 dB. The beam quality (M2) was less than 1.3 over the power scaling range.

11.
Sci Rep ; 7: 41480, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128340

RESUMEN

A new extraordinary application of deoxyribonucleic acid (DNA) thin-solid-film was experimentally explored in the field of ultrafast nonlinear photonics. Optical transmission was investigated in both linear and nonlinear regimes for two types of DNA thin-solid-films made from DNA in aqueous solution and DNA-cetyltrimethylammonium chloride (CTMA) in an organic solvent. Z-scan measurements revealed a high third-order nonlinearity with n2 exceeding 10-9 at a wavelength of 1570 nm, for a nonlinarity about five orders of magnitude larger than that of silica. We also demonstrated ultrafast saturable absorption (SA) with a modulation depth of 0.43%. DNA thin solid films were successfully deposited on a side-polished optical fiber, providing an efficient evanescent wave interaction. We built an organic-inorganic hybrid all-fiber ring laser using DNA film as an ultrafast SA and using Erbium-doped fiber as an efficient optical gain medium. Stable transform-limited femtosecond soliton pulses were generated with full width half maxima of 417 fs for DNA and 323 fs for DNA-CTMA thin-solid-film SAs. The average output power was 4.20 mW for DNA and 5.46 mW for DNA-CTMA. Detailed conditions for DNA solid film preparation, dispersion control in the laser cavity and subsequent characteristics of soliton pulses are discussed, to confirm unique nonlinear optical applications of DNA thin-solid-film.


Asunto(s)
ADN/química , Dinámicas no Lineales , Fibras Ópticas , Cetrimonio , Compuestos de Cetrimonio/química , Erbio/química , Rayos Láser , Refractometría , Factores de Tiempo
12.
Nat Commun ; 6: 6851, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25897687

RESUMEN

Active manipulation of light in optical fibres has been extensively studied with great interest because of its compatibility with diverse fibre-optic systems. While graphene exhibits a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, electric control of all-fibre graphene devices remains still highly challenging. Here we report electrically manipulable in-line graphene devices by integrating graphene-based field effect transistors on a side-polished fibre. Ion liquid used in the present work critically acts both as an efficient gating medium with wide electrochemical windows and transparent over-cladding facilitating light-matter interaction. Combined study of unique features in gate-variable electrical transport and optical transition at monolayer and randomly stacked multilayer graphene reveals that the device exhibits significant optical transmission change (>90%) with high efficiency-loss figure of merit. This subsequently modifies nonlinear saturable absorption characteristics of the device, enabling electrically tunable fibre laser at various operational regimes. The proposed device will open promising way for actively controlled optoelectronic and nonlinear photonic devices in all-fibre platform with greatly enhanced graphene-light interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA