Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 26(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34577136

RESUMEN

Extensive epigenetic remodeling occurs during the cell fate determination of stem cells. Previously, we discovered that eudesmin regulates lineage commitment of mesenchymal stem cells through the inhibition of signaling molecules. However, the epigenetic modulations upon eudesmin treatment in genomewide level have not been analyzed. Here, we present a transcriptome profiling data showing the enrichment in PRC2 target genes by eudesmin treatment. Furthermore, gene ontology analysis showed that PRC2 target genes downregulated by eudesmin are closely related to Wnt signaling and pluripotency. We selected DKK1 as an eudesmin-dependent potential top hub gene in the Wnt signaling and pluripotency. Through the ChIP-qPCR and RT-qPCR, we found that eudesmin treatment increased the occupancy of PRC2 components, EZH2 and SUZ12, and H3K27me3 level on the promoter region of DKK1, downregulating its transcription level. According to the analysis of GEO profiles, DEGs by depletion of Oct4 showed an opposite pattern to DEGs by eudesmin treatment. Indeed, the expression of pluripotency markers, Oct4, Sox2, and Nanog, was upregulated upon eudesmin treatment. This finding demonstrates that pharmacological modulation of PRC2 dynamics by eudesmin might control Wnt signaling and maintain pluripotency of stem cells.


Asunto(s)
Furanos , Lignanos , Transcriptoma , Diferenciación Celular , Línea Celular , Reposicionamiento de Medicamentos , Histonas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros , Complejo Represivo Polycomb 2 , Vía de Señalización Wnt
2.
Arch Pharm Res ; 45(7): 494-505, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35759089

RESUMEN

Numerous active compounds derived from ginseng exhibit various pharmacological and therapeutic effects in humans. Despite the benefits of ginsenosides, little is known about their influence on embryonic development, especially in human embryonic models. In this study, we evaluated the effect of two ginsenosides (Rg3 and Rh2) on human embryonic development, using embryoid bodies and three-dimensional (3D) aggregates of pluripotent stem cells. We exposed embryoid bodies to varying concentrations of Rg3 and Rh2 (5, 10, and 25 µg/mL), and their embryotoxicity was evaluated by measuring the size of the embryoid body and the expression of epithelial-mesenchymal transition (EMT) markers. The growth rates of embryoid bodies were reduced upon treatment with a high concentration (25 µg/mL) of Rg3 and Rh2. In addition, Rg3 induced E-cadherin expression while inhibiting N-cadherin and vimentin expression, which implies the inhibition of EMT. Such a change in E-cadherin expression was not observed after Rh2 treatment, but the inhibition of N-cadherin and vimentin expression was observed to be consistent with that observed on treatment with Rg3. Taken together, using the human embryoid model, we found that the two active ginsenosides, Rg3 and Rh2, induce aberrant embryoid body formation and ablate normal EMT.


Asunto(s)
Ginsenósidos , Cadherinas , Cuerpos Embrioides , Transición Epitelial-Mesenquimal , Ginsenósidos/farmacología , Humanos , Vimentina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA