Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; : 1-13, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967335

RESUMEN

During the key event 1 of skin sensitization defined as covalent binding or haptenization of sensitizer to either thiol or amino group of skin proteins, a sensitizer not only covalently binds with skin proteins but also interacts with nucleophilic small molecules such as glutathione (GSH). Although GSH would not be directly associated with skin sensitization, this interaction may be applied for developing an alternative test method simulating key event 1, haptenization. Thus, the aim of the present study was to examine whether N-acetyl-L-cysteine methyl ester (NACME), a thiol-containing compound, was selected as an electron donor to determine whether NACME reacted with sensitizers. Following a reaction of NACME with a sensitizer in a 96-well plate, the remaining NACME was measured spectrophotometrically using 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Following the optimization of test conditions with two different vehicles, such as acetonitrile (ACN) and dimethyl sulfoxide (DMSO), 64 test chemicals were tested to determine the predictive capacity of current NACME test method. The results obtained showed, the predictive capacity of 94.6% sensitivity, 88.9% specificity, and 92.2% accuracy utilizing DMSO as a vehicle with a cutoff NACME depletion of 5.85%. The three parameters were also over 85% in case of ACN. These values were comparable to or better than other OECD-approved test methods. Data demonstrated that a simple thiol-containing compound NACME might constitute as a reliable candidate for identifying reactive skin sensitizers, and that this method be considered as practical method as a screening tool for assessing a chemical's tendency to initiate skin sensitization.

2.
Biomed Chromatogr ; 36(9): e5425, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35696664

RESUMEN

Ethanol intake can alter pharmacokinetics by increasing the solubility or enhancing the absorption of concomitant drugs. Here, a selective, sensitive and reproducible high-performance liquid chromatography-tandem mass spectrometry method for the quantitative analysis of nicardipine in rat plasma was developed using simple protein precipitation. The calibration curve was linear over a concentration range of 1-2,000 ng/ml (r2 > 0.998). Accuracy ranged from 93.4 to 112.2% and precision was within 12.1% from three independent analytical batches. Stable conditions for the quantification of nicardipine in rat plasma were established in various conditions, including sample storage and handling. The matrix effect was negligible, and recovery was consistent at three different levels of quality control sample. The method was applied to assessment for the effect of ethanol on the pharmacokinetics of nicardipine in rats. The oral bioavailability of nicardipine was increased from 5.4 to 9.4% in Sprague-Dawley rats by concomitant oral administration of ethanol whereas the half-life was not altered. The findings indicated that concomitant ethanol intake can increase systemic drug exposure by increasing gastrointestinal absorption, especially poorly soluble drugs. This study provides an insight for further investigation of the alteration of the pharmacological effect of poorly soluble drugs owing to ethanol intake.


Asunto(s)
Nicardipino , Espectrometría de Masas en Tándem , Administración Oral , Animales , Cromatografía Líquida de Alta Presión , Etanol , Preparaciones Farmacéuticas , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
3.
J Toxicol Environ Health A ; 84(19): 783-799, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34196263

RESUMEN

A convenient fluorometrical test method to identify skin sensitizers in chemico was developed using reactivity with glutathione (GSH), a low molecular weight endogenous substance. Following incubation of test chemicals with GSH, the remaining GSH was quantitated fluorometrically by using monobromobimane (mBBr), a thiol-detecting agent, for determining % depletion of this endogenous substance by test chemicals. The experimental conditions optimized were: (1) reactivity of thiol compounds including GSH with mBBr, (2) effects of vehicles on reactivity, (3) molar ratios of GSH to test chemicals, and (4) reactivity of endogenous substance with test substances under different incubation times. When an optimized condition with DMSO as a vehicle for test chemicals and in 1:60 ratio for 24 hr at 4°C was applied to classify 48 well-known skin sensitizers and non-sensitizers, the predictive capacity was as follows: 88.2% sensitivity, 78.6% specificity, and 85.4% accuracy with 95.8% consistency of three trials when 10.3% depletion of GSH was used as a cutoff value. Because the present method employed relatively simple GSH as an acceptor for sensitizers and/or a relatively convenient fluorometric detection system in 96-well plates for a high throughput test, it would be a useful test tool for screening skin sensitization potential of test chemicals.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Compuestos Bicíclicos con Puentes/química , Fluorometría/métodos , Glutatión/análisis , Piel/efectos de los fármacos , Piel/fisiopatología
4.
Biopharm Drug Dispos ; 42(1): 35-41, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33386627

RESUMEN

CYP1A2 is one of the main Cytochrome P450 enzymes in the human liver associated with the metabolism of several xenobiotics. CYP1A2 is especially involved in the metabolic activation of different procarcinogens. Therefore, the development of cancer may be inhibited by inhibiting CYP1A2 activity. Here, the inhibitory effect of HYIpro-3-1 and its derivatives on CYP1A2 activity in human liver microsomes (HLM) was studied through LC-MS/MS using a cocktail assay. Among the four compounds, HYIpro-3-1 showed the most selective and strongest inhibitory effect on CYP1A2 at IC50 values of 0.1 µM in HLMs and inhibition was confirmed using purified human CYP1A2. It was determined that inhibition is reversible because the inhibitory effect of HYIpro-3-1 is not dependent on preincubation time. HYIpro-3-1 showed a typical pattern of competitive inhibition for CYP1A2-catalyzed phenacetin O-deethylation, based on the Lineweaver-Burk plot, with a Ki value of 0.05 µM in HLMs; the secondary plot also showed a linear pattern. In our study, HYIpro-3-1 was proposed as a novel inhibitor with the capacity to selectively inhibit CYP1A activity in HLMs.


Asunto(s)
Inhibidores del Citocromo P-450 CYP1A2/farmacología , Microsomas Hepáticos/enzimología , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Humanos
5.
Xenobiotica ; 50(4): 380-388, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31233374

RESUMEN

1. Glycyrol is a coumestan derivative that is isolated from roots of Glycyrrhiza uralensis. Glycyrol exhibits several biological effects, including anti-oxidative and anti-inflammatory effects.2. Herein, we characterized glycyrol metabolism by cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) using human liver microsomes (HLM), human liver cytosol, human intestinal microsomes, or human recombinant cDNA-expressed CYPs and UGTs. The analysis was conducted using high resolution mass spectroscopy (HR-MS) on a Q ExactiveTM HF Hybride Quadrupole-Orbitrap mass spectrometer.3. NADPH-supplemented HLM generated six glycyrol metabolites (M1-M6) via hydroxylation, oxidation, and hydration; both NADPH- and UDPGA-supplemented liver microsomes generated three glucuronides (M7-M9). Reaction phenotyping revealed that CYP1A2 is the primary enzyme responsible for phase I metabolism, with minor involvement of the CYP3A4/5, CYP2D6, and CYP2E1 enzymes. Glucuronidation of glycyrol was primarily mediated by UGT1A1, UGT1A3, UGT1A9, and UGT2B7.4. In conclusion, glycyrol undergoes the efficient metabolic hydroxylation and glucuronidation reactions in human liver microsomes, which are predominantly catalyzed by CYP1A2, UGT1A1/3/9, and UGT2B7.


Asunto(s)
Flavonoides/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Humanos , Microsomas/metabolismo , Microsomas Hepáticos/metabolismo , Espectrometría de Masas en Tándem , UDP Glucuronosiltransferasa 1A9
6.
Regul Toxicol Pharmacol ; 117: 104725, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32768665

RESUMEN

We conducted a me-too validation study to confirm the reproducibility, reliability, and predictive capacity of KeraSkin™ skin irritation test (SIT) as a me-too method of OECD TG 439. With 20 reference chemicals, within-laboratory reproducibility (WLR) of KeraSkin™ SIT in the decision of irritant or non-irritant was 100%, 100%, and 95% while between-laboratory reproducibility (BLR) was 100%, which met the criteria of performance standard (PS, WLR≥90%, BLR≥80%). WLR and BLR were further confirmed with intra-class correlation (ICC, coefficients >0.950). WLR and BLR in raw data (viability) were also shown with a scatter plot and Bland-Altman plot. Comparison with existing VRMs with Bland-Altman plot, ICC and kappa statistics confirmed the compatibility of KeraSkin™ SIT with OECD TG 439. The predictive capacity of KeraSkin™ SIT was estimated with 20 reference chemicals (the sensitivity of 98.9%, the specificity of 70%, and the accuracy of 84.4%) and additional 46 chemicals (for 66 chemicals [20 + 46 chemicals, the sensitivity, specificity and accuracy: 95.2%, 82.2% and 86.4%]). The receiver operating characteristic (ROC) analysis suggested a potential improvement of the predictive capacity, especially sensitivity, when changing cut-off (50% → 60-75%). Collectively, the me-too validation study demonstrated that KeraSkin™ SIT can be a new me-too method for OECD TG 439.


Asunto(s)
Epidermis/efectos de los fármacos , Adhesión a Directriz/normas , Irritantes/toxicidad , Modelos Biológicos , Organización para la Cooperación y el Desarrollo Económico/normas , Pruebas de Irritación de la Piel/normas , Epidermis/metabolismo , Epidermis/patología , Humanos , Irritantes/metabolismo , Pruebas de Irritación de la Piel/métodos
7.
Biopharm Drug Dispos ; 41(4-5): 221-225, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32364297

RESUMEN

Deoxyshikonin, a natural shikonin derivative, is the major component of Lithospermum erythrorhizon and exhibits various pharmacological effects such as lymphangiogenetic, antibacterial, wound healing, and anticancer effects. To investigate the herb-drug interaction potential associated with deoxyshikonin, the inhibitory effects of deoxyshikonin on eight major cytochrome P450 (CYP) enzymes were examined using cocktail substrate-incubated human liver microsomes. Deoxyshikonin strongly inhibited CYP2B6-catalyzed bupropion hydroxylation, with a Ki value of 3.5 µM, and the inhibition was confirmed using purified human CYP2B6. The inhibition was reversible because the inhibitory effect of deoxyshikonin was not dependent on the preincubation time. The results indicated that deoxyshikonin-induced drug-drug interaction should be considered when any herb containing deoxyshikonin is used for conventional medications.


Asunto(s)
Inhibidores del Citocromo P-450 CYP2B6/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones de Hierba-Droga , Naftoquinonas/farmacología , Humanos , Microsomas Hepáticos/metabolismo
8.
J Toxicol Environ Health A ; 82(15): 879-889, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507242

RESUMEN

It has been a challenge to develop in vitro alternative test methods for accurate prediction of metallic products which may exert skin sensitization, as several test methods adopted by OECD were relatively ineffective in assessing the capacity for metallic compounds to exert sensitizing reactions, compared with organic test substances. Based upon these findings, a system that incorporates ß-galactosidase producing E. coli cultures was tested for its predictive capacity to well-known metallic sensitizers. In this system, E. coli cells were incubated with metal salts at various concentrations and ß-galactosidase suppression by each test metal was determined. Fourteen local lymph node assay (LLNA) categorized metal salts were examined. Although color interference from metal salts was minimal, a fluorometric detection system was also employed using 4-methylumbelliferyl galactopyranoside as a substrate for ß-galactosidase to avoid the color interference, concomitantly with the original UV-spectrometric method. Data demonstrated that two detection methods were comparable and complementary. In addition, most of the metallic sensitizers were correctly identified at 0.6 and 0.8 mM concentrations. Despite the lower specificity obtained in the current study and small number of substances tested, the developed method appears to be a relatively simple and effective in vitro method for detecting metallic sensitizers. When 61 chemicals tested in the ß-galactosidase producing E. coli cultures including the present study were collectively analyzed, the prediction capacity was as high as other OECD-adopted tests: 95.6% of sensitivity, 66.7% of specificity, and 88.5% of accuracy. It is important to emphasize that animals or mammalian cell cultures were not required in the current method, which are in accordance with the EU guidelines on restricted or banned animal testing.


Asunto(s)
Dermatitis Alérgica por Contacto , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Metales/toxicidad , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/metabolismo , Alternativas a las Pruebas en Animales/métodos , Escherichia coli/enzimología , Fluorometría , Isopropil Tiogalactósido , Sensibilidad y Especificidad , Piel/efectos de los fármacos , beta-Galactosidasa/genética
9.
J Toxicol Environ Health A ; 82(8): 502-513, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31140386

RESUMEN

Occupational exposure of workers to 1-bromopropane (1-BP) has raised concerns in industry for many years. Despite the known toxicity of this chemical, molecular events attributed to exposure to 1-BP have not been extensively studied. The aim of the present study was to examine the effects of 1-BP exposure on adduct formation with DNA and glutathione (GSH) in male Sprague-Dawley rats in an attempt to determine the early stages of toxicity. Following 6 h after either single or daily exposure to 1-BP for 3 days, N7-propyl guanine and S-propyl GSH were quantified in several organs by using liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that N7-propyl guanine was maximally formed in liver followed by spleen, testes, and lung in both dose- and time-dependent manners. However, DNA adduct was not detected in cardiac tissue. In the case of S-propyl GSH, this compound was formed in the following order in various organs: liver > testes > spleen > kidney > lung > heart. In a subsequent in vitro study, formation of N7-propyl guanine initiated by 1-BP in calf thymus DNA was not markedly affected by addition of liver homogenates, which indicated that this chemical may be acting as a direct alkylating agent. In contrast, an in vitro study with free GSH demonstrated that 1-BP reduced GSH and elevated production of S-propyl GSH, and that the production of this adduct was significantly higher in the presence of active liver homogenates. Data indicated that formation of GSH adducts initiated by 1-BP might be associated with an enzyme-driven process. Although further characterization is necessary, it would appear that N7-propyl guanine and S-propyl GSH might serve as useful markers in cases of exposure assessment of 1-BP.


Asunto(s)
Aductos de ADN/efectos de los fármacos , Contaminantes Ambientales/efectos adversos , Glutatión/efectos de los fármacos , Solventes/efectos adversos , Animales , Aductos de ADN/metabolismo , Glutatión/metabolismo , Hidrocarburos Bromados/efectos adversos , Hígado/efectos de los fármacos , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
10.
Biopharm Drug Dispos ; 40(7): 234-241, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31242324

RESUMEN

Loxoprofen is a prodrug that exerts strong analgesic and anti-inflammatory effects through its active trans-alcohol metabolite, which is produced in the liver by carbonyl reductase. Previous metabolic studies have evaluated loxoprofen, but its sulfate and taurine conjugates have not yet been studied. We characterized the metabolomic profile of loxoprofen in rat plasma, urine, and feces using high-resolution mass spectrometry. We identified 17 metabolites of loxoprofen in the three different biological matrices, 13 of which were detected in plasma and feces and 16 in urine. Amongst these metabolites, two novel taurine conjugates (M12 and M13) and two novel acyl glucuronides (M14, M15) were identified for the first time in rats. In addition, we detected three novel sulfate conjugates (M9, M10, and M11) of loxoprofen. Further study of these metabolites of loxoprofen is essential in order to assess their potency and toxicity.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Fenilpropionatos/farmacocinética , Profármacos/farmacocinética , Administración Oral , Animales , Antiinflamatorios no Esteroideos/sangre , Antiinflamatorios no Esteroideos/orina , Heces/química , Masculino , Metabolómica , Fenilpropionatos/sangre , Fenilpropionatos/orina , Ratas Sprague-Dawley , Sulfatos/metabolismo
11.
Toxicol Appl Pharmacol ; 352: 28-37, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29792946

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) includes conditions such as steatosis, non-alcoholic steatohepatitis, and ultimately hepatocellular carcinoma. Although the pathology of NAFLD is well-established, NAFLD-induced drug metabolism mediated by cytochrome P450 (CYP) in the liver has remained largely unexplored. Therefore, we investigated NAFLD-induced drug metabolism mediated by CYP by quantitative toxicoproteomics analysis. After administration of a methionine-choline deficient (MCD) diet to induce development of NAFLD, tandem mass tags-based liquid chromatography-tandem mass spectrometry analysis was conducted to investigate the dynamics of hepatic proteins. A total of 1295 proteins were identified, of which 934 were quantified by proteomic analysis. Among these proteins, 21 proteins were up-regulated and 51 proteins were down-regulated by the MCD diet. Notably, domain annotation enrichment using InterPro indicated that proteins related to CYPs were significantly decreased. When we investigated CYP activity using in vivo and in vitro CYP cocktail assays, most CYPs were significantly decreased, whereas CYP2D was not changed after administration of the MCD diet. In conclusion, we identified significantly altered levels of CYPs and their activities induced by the MCD diet and confirmed the NAFLD-induced drug metabolism by pharmacokinetic analysis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Proteómica/métodos , Toxicología/métodos , Xenobióticos/metabolismo , Animales , Deficiencia de Colina/complicaciones , Cromatografía Liquida , Biología Computacional , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Isoenzimas , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Medición de Riesgo , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Xenobióticos/farmacocinética , Xenobióticos/toxicidad
12.
J Toxicol Environ Health A ; 81(9): 288-301, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29473800

RESUMEN

Although the Organization for Economic Cooperation and Development (OECD) has adopted several in vitro methods with reasonable predictive capacity, alternative methods for identifying skin sensitizers and non-sensitizers with reliability and simplicity are still required for more efficient and economic prediction. The present study was to design an in vitro system with the use of a ß-galactosidase-expressing E. coli culture for simpler but sufficiently accurate classification of skin sensitizers and non-sensitizers. A LacZ gene-containing E. coli strain that is capable of producing ß-galactosidase enzyme was induced by isopropyl ß-D-1-thiogalactopyranoside with concomitant treatment with test chemicals. After 6-hr incubation, cells were lysed and ß-galactosidase enzyme activity was monitored colorimetrically by using O-nitrophenyl-D-galactopyranoside as a substrate. Following optimization of several experimental conditions, 22 skin sensitizers and 11 non-sensitizers were examined to assess predictive capacity of this method. The results indicated that predictivity was as follows: 90.9% sensitivity, 81.8% specificity, and 87.9% accuracy, when 17.3% of control activity was used as the cut-off value to separate sensitizers from non-sensitizers. Data suggested that the current bacterial system expressing ß-galactosidase may serve as a useful alternative test for classifying skin sensitizers and non-sensitizers, without the utilization of animals or mammalian cell cultures.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Cosméticos/efectos adversos , Escherichia coli/efectos de los fármacos , beta-Galactosidasa/metabolismo , Cosméticos/clasificación , Microorganismos Modificados Genéticamente/efectos de los fármacos
13.
Regul Toxicol Pharmacol ; 80: 183-94, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27318101

RESUMEN

Local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) is a modified non-radioisotopic technique with the additional advantages of accommodating multiple endpoints with the introduction of FCM, and refinement and reduction of animal use by using a sophisticated prescreening scheme. Reliability and accuracy of the LLNA: BrdU-FCM was determined according to OECD Test Guideline (TG) No. 429 (Skin Sensitization: Local Lymph Node Assay) performance standards (PS), with the participation of four laboratories. Transferability was demonstrated through successfully producing stimulation index (SI) values for 25% hexyl cinnamic aldehyde (HCA) consistently greater than 3, a predetermined threshold, by all participating laboratories. Within- and between-laboratory reproducibility was shown using HCA and 2,4-dinitrochlorobenzene, in which EC2.7 values (the estimated concentrations eliciting an SI of 2.7, the threshold for LLNA: BrdU-FCM) fell consistently within the acceptance ranges, 0.025-0.1% and 5-20%, respectively. Predictive capacity was tested using the final protocol version 1.3 for the 18 reference chemicals listed in OECD TG 429, of which results showed 84.6% sensitivity, 100% specificity, and 88.9% accuracy compared with the original LLNA. The data presented are considered to meet the performance criteria for the PS, and its predictive capacity was also sufficiently validated.


Asunto(s)
Acroleína/análogos & derivados , Bromodesoxiuridina , Dinitroclorobenceno/toxicidad , Citometría de Flujo , Ensayos de Aptitud de Laboratorios , Ensayo del Nódulo Linfático Local , Ganglios Linfáticos/efectos de los fármacos , Acroleína/toxicidad , Animales , Femenino , Citometría de Flujo/normas , Adhesión a Directriz , Guías como Asunto , Humanos , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos BALB C , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , República de Corea
14.
Molecules ; 21(3): 337, 2016 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-26978333

RESUMEN

Since many glycoside compounds in natural products are hydrolyzed by intestinal microbiota when administered orally, it is of interest to know whether their pharmacological effects are derived from the glycoside itself or from the aglycone form in vivo. An interesting example is baicalin versus baicalein, the aglycone of baicalin, which is contained in some herbs from Labiatae including Scutellaria baicalensis Georgi and Scutellaria lateriflora Linne. The herbs have been extensively used for treatment of inflammatory diseases in Asia. Although there have been numerous reports regarding the pharmacological effects of baicalin and baicalein in vivo and in vitro, some reports indicated that the glycoside form would hardly be absorbed in the intestine and that it should be hydrolyzed to baicalein in advance for absorption. Therefore, the role of metabolism by intestinal microbiota should also be considered in the metabolism of baicalin. In addition, baicalin contains a glucuronide moiety in its structure, by which baicalin and baicalein show complex pharmacokinetic behaviors, due to the interconversion between them by phase II enzymes in the body. Recently, concerns about drug interaction with baicalin and/or baicalein have been raised, because of the co-administration of Scutellaria species with certain drugs. Herein, we reviewed the role of intestinal microbiota in pharmacokinetic characteristics of baicalin and baicalein, with regards to their pharmacological and toxicological effects.


Asunto(s)
Interacciones Farmacológicas , Flavonoides/farmacología , Microbioma Gastrointestinal , Animales , Biomarcadores , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/farmacología , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Estructura Molecular , Ratas
15.
J Proteome Res ; 14(12): 5215-24, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26487105

RESUMEN

Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation.


Asunto(s)
Microsomas Hepáticos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Fosfopéptidos/química , Fosfopéptidos/aislamiento & purificación , Fosfoproteínas/química , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteómica , Especificidad por Sustrato
16.
Biochem Biophys Res Commun ; 463(4): 832-8, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26056001

RESUMEN

Steatosis is the earliest and most common disease of the liver due to chronic ethanol consumption, and stems from alterations in the function of transcription factors related to lipid metabolism. Protein acetylation at the lysine residue (Kac) is known to have diverse functions in cell metabolism. Recent studies showed that ethanol exposure induces global protein hyperacetylation by reducing the deacetylase activities of SIRT1 and SIRT3. Although global acetylome analyses have revealed the involvement of a variety of lysine acetylation sites, the exact sites directly regulated by ethanol exposure are unknown. In this study, to elucidate the exact hyperacetylation sites that contribute to SIRT1 and SIRT3 downregulation, we identified and quantified a total of 1285 Kac sites and 686 Kac proteins in AML-12 cells after ethanol treatment (100 mM) for 3 days. All quantified Kac sites were divided into four quantiles: Q1 (0-15%), Q2 (15-50%), Q3 (50-85%), and Q4 (85-100%). Q4 had 192 Kac sites indicating ethanol-induced hyperacetylation. Using the Motif-x program, the [LXKL], [KH], and [KW] motifs were included in the Q4 category, where [KW] was a specific residue for SIRT3. We also performed gene ontology term and KEGG pathway enrichment analyses. Hyperacetylation sites were significantly enriched in biosynthetic processes and ATPase activities within the biological process and molecular function categories, respectively. In conclusion, ethanol regulates the acetylation of proteins in a variety of metabolic pathways mediated by SIRT1 and SIRT3. As a result, ethanol stimulates increased de novo fatty acid synthesis in hepatocytes.


Asunto(s)
Etanol/farmacología , Hígado Graso/inducido químicamente , Hepatocitos/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Acetilación , Animales , Línea Celular , Hígado Graso/fisiopatología , Ratones , Espectrometría de Masas en Tándem
17.
Toxicol Appl Pharmacol ; 283(2): 147-55, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25617811

RESUMEN

Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD.


Asunto(s)
Alérgenos/farmacología , Epidermis/metabolismo , Queratinocitos/metabolismo , Linfangiogénesis/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Epidermis/efectos de los fármacos , Epidermis/inmunología , Prepucio/efectos de los fármacos , Prepucio/inmunología , Prepucio/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Linfangiogénesis/efectos de los fármacos , Masculino , Ratones
18.
J Cell Biochem ; 115(11): 2004-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24924519

RESUMEN

Protein kinase A (PKA), a serine/threonine kinase, regulates bone formation, and enhances Bone morphogenetic protein (BMP)-induced osteoblast differentiation. However, the mechanisms of how PKA controls the cellular response to BMP are not well known. We investigated the effects of modulating PKA activity during BMP2-induced osteoblast differentiation, and found that PKA regulates the function of Dlx3. Dlx3 plays crucial roles in osteoblast differentiation and it is expressed in most skeletal elements during development. We found that PKA activation increases BMP2-induced expression of Dlx3 protein, and enhances the protein stability, DNA binding, and transcriptional activity of Dlx3. In addition, PKA activation induces the phosphorylation of Dlx3 at consensus PKA phosphorylation target site(s). Lastly, substitution of serine 10 in Dlx3 to alanine significantly reduces, if not completely abolishes, the phosphorylation of Dlx3 and the regulation of Dlx3 function by PKA. These results suggest that Dlx3 is a novel target of PKA, and that PKA mediates BMP signaling during osteoblast differentiation, at least in part, by phosphorylating Dlx3 and modulating the protein stability and function of Dlx3.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Osteoblastos/fisiología , Serina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Animales , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular , Línea Celular , Colforsina/farmacología , Células HEK293 , Proteínas de Homeodominio/química , Humanos , Isoquinolinas/farmacología , Ratones , Fosforilación , Estabilidad Proteica , Sulfonamidas/farmacología , Factores de Transcripción/química
19.
Toxicol Appl Pharmacol ; 277(1): 39-48, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24631339

RESUMEN

Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/biosíntesis , Neoplasias de la Mama/fisiopatología , Receptor alfa de Estrógeno/metabolismo , Leptina/farmacología , Línea Celular Tumoral , Citocromo P-450 CYP1B1 , Estrógenos de Catecol/biosíntesis , Femenino , Humanos , Células MCF-7 , Fosforilación , ARN Mensajero , ARN Interferente Pequeño , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Transfección , Regulación hacia Arriba/efectos de los fármacos
20.
Toxicol Appl Pharmacol ; 280(1): 138-48, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25110054

RESUMEN

Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Citocromo P-450 CYP1B1/antagonistas & inhibidores , Regulación hacia Abajo/efectos de los fármacos , Metformina/farmacología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1B1/biosíntesis , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/fisiología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Metformina/uso terapéutico , Receptores de Hidrocarburo de Aril/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA