Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 243: 117867, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070848

RESUMEN

Artificial reefs (ARs) have been globally deployed to enhance and restore coastal resource and ecosystems. Microorganisms play an essential role in marine ecosystems, while the knowledge regarding the impact of ARs on microecology is still limited, particularly data concerning the response of benthic microbial community to AR habitats. In this study, the seasonal dynamics of benthic microbial community in AR and adjacent non-artificial reef (NAR) areas surrounding Xiaoshi Island were investigated with high-throughput sequencing technology. The results revealed that the diversity and structure of microbial community between AR and NAR both displayed pronounced seasonal dynamics. There was a greater influence of season factors on microbial communities than that of habitat type. The microbial communities in AR and NAR habitats were characterized by a limited number of abundant taxa (ranging from 5 to 12 ASVs) with high relative abundance (8.35-25.53%) and numerous rare taxa (from 5994 to 12412 ASVs) with low relative abundance (11.91%-24.91%). Proteobacteria, Bacteroidota and Desulfobacterota were the common predominant phyla, with the relative abundances ranging from 50.94% to 76.76%. A total of 52 biomarkers were discovered, with 15, 4, 6, and 27 biomarkers identified in spring, summer, autumn and winter, respectively. Co-occurrence network analysis indicated that AR displayed a more complex interaction pattern and higher susceptibility to external disturbances. Furthermore, the neutral model and ßNTI analyses revealed that the assembly of microbial communities in both AR and NAR is significantly influenced by stochastic processes. This study could provide valuable insights into the impact of ARs construction on the benthic ecosystems and would greatly facilitate the development and implementation of the future AR projects.


Asunto(s)
Microbiota , Estaciones del Año , Bacteroidetes , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA