Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurochem Res ; 40(6): 1144-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25894682

RESUMEN

There is a body of evidence suggesting that mitochondrial dysfunction is involved in bipolar disorder (BD) pathogenesis. Studies suggest that abnormalities in circadian cycles are involved in the pathophysiology of affective disorders; paradoxical sleep deprivation (PSD) induces hyperlocomotion in mice. Thus, the present study aims to investigate the effects of lithium (Li) and valproate (VPA) in an animal model of mania induced by PSD for 96 h. PSD increased exploratory activity, and mood stabilizers prevented PSD-induced behavioral effects. PSD also induced a significant decrease in the activity of complex II-III in hippocampus and striatum; complex IV activity was decreased in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex. Additionally, VPA administration was able to prevent PSD-induced inhibition of complex II-III and IV activities in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex, whereas Li administration prevented PSD-induced inhibition only in prefrontal cortex and hippocampus. Regarding the enzymes of Krebs cycle, only citrate synthase activity was increased by PSD in prefrontal cortex. We also found a similar effect in creatine kinase, an important enzyme that acts in the buffering of ATP levels in brain; its activity was increased in prefrontal cortex, hippocampus and cerebral cortex. These results are consistent with the connection of mitochondrial dysfunction and hyperactivity in BD and suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.


Asunto(s)
Afecto/efectos de los fármacos , Antimaníacos/farmacología , Trastorno Bipolar/metabolismo , Trastorno Bipolar/psicología , Química Encefálica/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Privación de Sueño/metabolismo , Privación de Sueño/psicología , Sueño REM , Adenosina Trifosfato/metabolismo , Animales , Citrato (si)-Sintasa/metabolismo , Conducta Exploratoria/efectos de los fármacos , Carbonato de Litio/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Ácido Valproico/farmacología
2.
Mol Cell Biochem ; 350(1-2): 149-54, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21203802

RESUMEN

Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Acetaminophen is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, the authors evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of acetaminophen and treated with the combination of N-acetylcysteine (NAC) plus deferoxamine (DFX) or taurine. These results showed that acetaminophen administration inhibited the activities of complexes I and IV in cerebral cortex and that the treatment with NAC plus DFX or taurine was not able to reverse this inhibition. The authors did not observe any effect of acetaminophen administration on complexes II and III activities in any of the structures studied. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by reactive oxygen species. Since there was no effect of NAC + DFX, the effect of acetaminophen was likely to be due to something else than oxidative stress.


Asunto(s)
Acetaminofén , Encéfalo/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Fallo Hepático/inducido químicamente , Mitocondrias/efectos de los fármacos , Acetilcisteína/farmacología , Analgésicos no Narcóticos , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Encéfalo/fisiología , Deferoxamina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Transporte de Electrón/fisiología , Fallo Hepático/metabolismo , Fallo Hepático/fisiopatología , Masculino , Mitocondrias/metabolismo , Ratas , Ratas Wistar , Taurina/farmacología
3.
Mol Cell Biochem ; 341(1-2): 245-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20372980

RESUMEN

Bipolar disorder (BD) is a psychiatric disorder characterized by alternating episodes of mania and depression. The intracerebroventricular (i.c.v) administration of ouabain (a Na(+)/K(+)-ATPase inhibitor) in rats has been used as an animal model of mania, because present face, construct and predictive validities. Several studies strongly suggest that mitochondrial dysfunction play a central role in the pathophysiology of BD. Citrate synthase (CS) is an enzyme localized in the mitochondrial matrix and represents one of the most important steps of Krebs cycle. The aim of this study was to investigate CS activity in brain of rats after the administration of ouabain. Adult male Wistar rats received a single i.c.v. administration of ouabain (10(-2) and 10(-3) M) or vehicle (control group). Locomotor activity was measured using the open field task. CS activity was measured in the brain of rats immediately (1 h) and 7 days after ouabain administration. Our results showed that spontaneous locomotion was increased 1 h after ouabain administration, and that the hyperlocomotion persists 7 days after the administration. Moreover, CS activity was inhibited immediately after the administration of ouabain in the prefrontal cortex at the doses of 10(-3) and 10(-2) M. This inhibition remains by 7 days after the administration of ouabain. On the other hand, it was not observed any difference in CS activity in the hippocampus and striatum. Considering that inhibition of CS activity may reflect a mitochondrial dysfunction, it is tempting to speculate that the reduction of brain energy metabolism might be related to the pathophysiology of BD.


Asunto(s)
Trastorno Bipolar/enzimología , Citrato (si)-Sintasa/metabolismo , Ouabaína/farmacología , Animales , Trastorno Bipolar/inducido químicamente , Química Encefálica/efectos de los fármacos , Citrato (si)-Sintasa/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Ouabaína/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar
4.
Pharmacol Rep ; 67(5): 1033-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26398400

RESUMEN

BACKGROUND: Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. METHODS: MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. RESULTS: Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. CONCLUSIONS: These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Glucosa/metabolismo , Metilfenidato/farmacología , Animales , Relación Dosis-Respuesta a Droga , Ácido Láctico/metabolismo , Masculino , Ratas , Ratas Wistar
5.
Curr Neurovasc Res ; 12(1): 73-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25613382

RESUMEN

Studies have suggested that ketamine, a nonselective NMDA receptor antagonist, could be a new drug in the treatment of major depression, but the way ketamine presents such effects remains to be elucidated. Therefore, the objective of this paper was to evaluate the effects of ketamine treatment on parameters related to depression in the brain of adult rats subjected to an animal model of depression. The animals were divided into: non-deprived + saline; non-deprived + ketamine; deprived + saline; deprived + ketamine. Treatments involving ketamine (15 mg/kg) were administered once a day during 14 days in the animal's adult phase. After treatment, the brain derived-neurotrophic factor (BDNF) levels, oxidative stress and energy metabolism activity were evaluated in brain structures of rats involved in the circuit of depression. In the amygdala, hippocampus and nucleus accumbens (NAc), a reduction in BDNF levels was observed in deprived rats, but the animals treated with ketamine reversed the effects of this animal model only in the amygdala and NAc. In addition to this, the complex I activity, in deprived rats, was diminished in the prefrontal cortex (PFC) and amygdala; in the PFC and hippocampus, the complex II-III was diminished in deprived rats; still the administration of ketamine increased the complex IV activity in the PFC and amygdala of rats submitted to the maternal deprivation. In deprived rats, the creatine kinase activity was reduced in the PFC and amygdala, however the administration of ketamine reversed this decrease in the amygdala. The malondialdehyde (MDA) equivalents were increased in non-deprived rats treated with ketamine in the PFC and NAc. Carbonyl levels in the PFC were diminished in control rats that received saline. Though ketamine treatment reversed this effect in deprived rats in the PFC and hippocampus. Still, in NAc, the carbonyl levels were diminished in deprived rats. The superoxide dismutase (SOD) activity was increased in control rats that received ketamine in the PFC and NAc, and were diminished in deprived rats that received saline or ketamine in the PFC and hippocampus. These findings may help to explain that dysfunctions involving BDNF, oxidative stress and energy metabolism within specific brain areas, may be linked with the pathophysiology of depression, and antidepressant effects of ketamine can be positive, at least partially due to the control of these pathways.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Ketamina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Creatina Quinasa/metabolismo , Depresión/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Privación Materna , Embarazo , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico
6.
JIMD Rep ; 13: 159-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24214724

RESUMEN

Maple syrup urine disease (MSUD) is an inborn metabolism error caused by a deficiency of branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to an accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their corresponding α-keto and α-hydroxy acids. Previous reports suggest that MSUD patients are at high risk for chronic neuropsychiatric problems. Therefore, in this study, we assessed variables that suggest depressive-like symptoms (anhedonia as measured by sucrose intake, immobility during the forced swimming test and body and adrenal gland weight) in rats submitted to chronic administration of BCAA during development. Furthermore, we determined if these parameters were sensitive to imipramine and N-acetylcysteine/deferoxamine (NAC/DFX). Our results demonstrated that animals subjected to chronic administration of branched-chain amino acids showed a decrease in sucrose intake without significant changes in body weight. We also observed an increase in adrenal gland weight and immobility time during the forced swimming test. However, treatment with imipramine and NAC/DFX reversed these changes in the behavioral tasks. In conclusion, this study demonstrates a link between MSUD and depression in rats. Moreover, this investigation reveals that the antidepressant action of NAC/DFX and imipramine might be associated with their capability to maintain pro-/anti-oxidative homeostasis.

7.
Brain Res ; 1583: 269-76, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25128604

RESUMEN

Methylphenidate (MPH) is commonly prescribed for children who have been diagnosed with attention deficit hyperactivity disorder (ADHD); however, the action mechanisms of methylphenidate have not been fully elucidated. Studies have shown a relationship between apoptosis signaling pathways and psychiatric disorders, as well as in therapeutic targets for such disorders. So, we investigated if chronic treatment with MPH at doses of 1, 2 and 10mg/kg could alter the levels of pro-apoptotic protein, Bax, anti-apoptotic protein, Bcl-2, caspase-3 and cytochrome c in the brain of young and adult Wistar rats. Our results showed that MPH at all doses increased Bax in the cortex; the Bcl-2 and caspase-3 were increased with MPH (1mg/kg) and were reduced with MPH (2 and 10mg/kg); the cytochrome c was reduced in the cortex after treatment with MPH at all doses; in the cerebellum there was an increase of Bax with MPH at all doses, however, there was a reduction of Bcl-2, caspase-3, and cytochrome c with MPH (2 and 10mg/kg); in the striatum the treatment with MPH (10mg/kg) decreased caspase-3 and cytochrome c; treatment with MPH (2 and 10mg/kg) increased Bax and decreased Bcl-2 in the hippocampus; and the caspase-3 and cytochrome c were reduced in the hippocampus with MPH (10mg/kg). In conclusion, our results suggest that MPH influences plasticity in the brain of young and adult rats; however, the effects were dependent of age and brain area, on the one hand activating the initial cascade of apoptosis, increasing Bax and reducing Bcl-2, but otherwise inhibiting apoptosis by reduction of caspase-3 and cytochrome c.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Metilfenidato/farmacología , Animales , Apoptosis/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Caspasa 3/metabolismo , Estimulantes del Sistema Nervioso Central/toxicidad , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Immunoblotting , Metilfenidato/toxicidad , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
8.
Behav Brain Res ; 233(2): 526-35, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22659397

RESUMEN

The present study was aimed at investigating the behavioral and molecular effects of tianeptine. To this aim, Wistar rats were treated with tianeptine (5, 10 and 15 mg/kg) or imipramine (30 mg/kg) acutely and chronically. The results showed that both treatments reduced the immobility time. The BDNF levels were increased in the prefrontal cortex with tianeptine and decreased in the nucleus accumbens after acute treatment; in chronic treatment, BDNF levels were increased in the prefrontal and hippocampus with tianeptine. Acute treatment decreased the citrate synthase activity in the prefrontal cortex with tianeptine, and increased it in the amygdala with imipramine; chronic treatment increased the citrate synthase in the hippocampus with tianeptine. The creatine kinase was increased in the prefrontal cortex with tianeptine and in the amygdala with imipramine after acute treatment; chronic treatment increased the creatine kinase activity in the hippocampus with imipramine and tianeptine. The complex I activity was decreased in the prefrontal cortex with imipramine and increased in the hippocampus with tianeptine. The other complexes were increased with imipramine and tianeptine at all doses, but were related to the treatment given and the brain area studied. Chronic treatment increased the malate dehydrogenase activity in the amygdala with tianeptine. Acute treatment decreased the succinate activity in the prefrontal cortex, hippocampus and amygdala with tianeptine; chronic treatment increased the succinate activity in the hippocampus with tianeptine at all doses. In conclusion, tianeptine exerted antidepressant-like behavior which can be attributed to its effects on pathways related to depression, such as BDNF and metabolism energy.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Metabolismo Energético/efectos de los fármacos , Tiazepinas/farmacología , Análisis de Varianza , Animales , Citrato (si)-Sintasa , Creatina Quinasa , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Conducta Exploratoria/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Imipramina/farmacología , Masculino , Ratas , Ratas Wistar , Natación/psicología
9.
Depress Res Treat ; 2012: 987397, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21969912

RESUMEN

The present study evaluated mitochondrial respiratory chain and creatine kinase activities after administration of harmine (5, 10, and 15 mg/kg) and imipramine (10, 20, and 30 mg/kg) in rat brain. After acute treatment occurred an increase of creatine kinase in the prefrontal with imipramine (20 and 30 mg/kg) and harmine in all doses, in the striatum with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg); harmine (15 mg/kg) decreased creatine kinase. In the chronic treatment occurred an increase of creatine kinase with imipramine (20 mg/kg), harmine (5 mg/kg) in the prefrontal with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg) in the striatum. In the acute treatment, the complex I increased in the prefrontal with harmine (15 mg/kg) and in the striatum with harmine (10 mg/kg); the complex II decreased with imipramine (20 and 30 mg/kg) in the striatum; the complex IV increased with imipramine (30 mg/kg) in the striatum. In the chronic treatment, the complex I increased with harmine (5 mg/kg) in the prefrontal; the complex II increased with imipramine (20 mg/kg) in the prefrontal; the complex IV increased with harmine (5 mg/kg) in the striatum. Finally, these findings further support the hypothesis that harmine and imipramine could be involved in mitochondrial function.

10.
Brain Res Bull ; 80(6): 327-30, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19772902

RESUMEN

Major depression is a serious and recurrent disorder often manifested with symptoms at the psychological, behavioral, and physiological levels. In addition, several works also suggest brain metabolism impairment as a mechanism underlying depression. Creatine kinase (CK) plays a central role in the metabolism of high-energy consuming tissues such as brain, where it functions as an effective buffering system of cellular ATP levels. Considering that CK plays an important role in brain energy homeostasis and that some antidepressants may modulate energy metabolism, we decided to investigate CK activity from rat brain after chronic administration of paroxetine (selective serotonin reuptake inhibitor), nortriptiline (tricyclic antidepressant) and venlafaxine (selective serotonin-norepinephrine reuptake inhibitor). Adult male Wistar rats received daily injections of paroxetine (10 mg/kg), nortriptiline (15 mg/kg), venlafaxine (10 mg/kg) or saline in 1.0 mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activity of CK was measured. Our results demonstrated that chronic administration of paroxetine increased CK activity in the prefrontal cortex, hippocampus and striatum of adult rats. On the other hand, nortriptiline and venlafaxine chronic administration did not affect CK activity in these brain areas. In order to verify whether the effect of paroxetine on CK is direct or indirect, we also measured the in vitro effect of this drug on the activity of the enzyme. We verified that paroxetine did not affect CK activity in vitro. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in CK activity by antidepressants may be an important mechanism of action of these drugs.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Forma BB de la Creatina-Quinasa/metabolismo , Paroxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Antidepresivos de Segunda Generación/farmacología , Antidepresivos Tricíclicos/farmacología , Encéfalo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Ciclohexanoles/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/metabolismo , Masculino , Nortriptilina/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/enzimología , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Clorhidrato de Venlafaxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA