Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mikrochim Acta ; 191(2): 88, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206460

RESUMEN

The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.


Asunto(s)
Exosomas , Nanoestructuras , Nitritos , Elementos de Transición , Humanos , Biomarcadores de Tumor , Peso Molecular
2.
Rapid Commun Mass Spectrom ; 34(17): e8828, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32396682

RESUMEN

RATIONALE: An alternative method of analysis for laser-based secondary neutral mass spectrometry is introduced. METHODS: By mixing a fundamental 1240 nm wavelength of the near-infrared laser field with an intensity of 1 × 1015 W/cm2 with its second harmonic generation wavelength of 620 nm, control is attained over the ion yield in secondary neutral mass spectrometry for a native silver surface and a surface covered with silver nanoparticles. RESULTS: The ion yields of selected species in the mass spectra, such as a C2 H4 O2 surfactant fragment ion and the Ag ion, are enhanced or suppressed by a factor of 8 or 23, respectively, in comparison with single color post-ionization. In addition, a significant suppression of ion fragmentation is demonstrated for both the silver sample and silver nanoparticles. Periodic variation of the ion yield with a modulation depth of 4% is observed depending upon the relative phase between the fundamental and second harmonic generated fields. These variations are explained in terms of tunneling ionization with symmetry-broken fields. CONCLUSIONS: An additional degree of freedom in a form of additional second color is introduced in laser-based secondary neutral mass spectrometry. Ion yield control is extended in a form of symmetry-broken fields.

3.
Mikrochim Acta ; 187(1): 52, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848717

RESUMEN

An electrochemical study was performed on the behavior of Ti3C2Tx MXenes prepared by using either HF (MXene1) or LiF/HCl as etchants (MXene2). The use of two redox probes indicates the presence of a higher negative charge density on MXene2 in comparison to MXene1. The characterization of two nanomaterials shows that titanium and fluoride are present higher by one order of magnitude at the interface of MXene2, compared to MXene1. The high Ti and F content is accompanied by a 82-fold larger (249 µA·cm-2 vs. 5.64 µA·cm-2) anodic peak at the peak potential near 0.4 V (vs. Ag/AgCl). Similarly, the peak current on MXene2 is 317-fold higher for the oxygen reduction at pH 7.0 (at a voltage of -0.84 V) and 215-fold higher for the reduction of H2O2 at -0.89 V, when compared to MXene1. Graphical abstractDifference in electrochemical behavior of MXene prepared by HF (MXene1) and LiF/HCl (MXene2) as etchants.

4.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818011

RESUMEN

The study describes development of a glycan biosensor for detection of a tumor-associated antibody. The glycan biosensor is built on an electrochemically activated/oxidized graphene screen-printed electrode (GSPE). Oxygen functionalities were subsequently applied for covalent immobilization of human serum albumin (HSA) as a natural nanoscaffold for covalent immobilization of Thomsen-nouvelle (Tn) antigen (GalNAc-O-Ser/Thr) to be fully available for affinity interaction with its analyte-a tumor-associated antibody. The step by step building process of glycan biosensor development was comprehensively characterized using a battery of techniques (scanning electron microscopy, atomic force microscopy, contact angle measurements, secondary ion mass spectrometry, surface plasmon resonance, Raman and energy-dispersive X-ray spectroscopy). Results suggest that electrochemical oxidation of graphene SPE preferentially oxidizes only the surface of graphene flakes within the graphene SPE. Optimization studies revealed the following optimal parameters: activation potential of +1.5 V vs. Ag/AgCl/3 M KCl, activation time of 60 s and concentration of HSA of 0.1 g L-1. Finally, the glycan biosensor was built up able to selectively and sensitively detect its analyte down to low aM concentration. The binding preference of the glycan biosensor was in an agreement with independent surface plasmon resonance analysis.


Asunto(s)
Anticuerpos Antineoplásicos/sangre , Antígenos de Carbohidratos Asociados a Tumores/química , Técnicas Biosensibles/métodos , Grafito/química , Anticuerpos Antineoplásicos/inmunología , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Técnicas Electroquímicas , Electrodos , Humanos , Límite de Detección , Albúmina Sérica/química
5.
Gen Physiol Biophys ; 37(5): 527-535, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30307403

RESUMEN

This work provides complex characterisation of cirrhotic rat liver tissue induced by carbon tetrachloride using biochemical and histopathological analyses, and also presents a novel approach, secondary ion mass spectrometry (SIMS). According to our knowledge, this is the first report that compares these three different approaches in study of liver damage. We observed increased levels of triacylglycerols and total cholesterol in the liver and decreased levels of those parameters in the plasma. Histopathological observations include fat accumulation in the cells and changes in internal configuration of cells such as shift of position of organelles from the centre to the edge. The damage to the rat tissue is additionally determined by SIMS analysis, which characterizes, among other substances, diacylglycerols, cholesterol and fatty acids, such as linoleic and oleic acids. Interestingly, unlike other observed particles, a marked difference in SIMS intensity for diacylglycerol C37H69O4 positive fragment at 575.5 m/u was observed. In fact, there was one order of magnitude difference between intoxicated liver samples and controls and this molecular signal seems to be a potential chemical indicator of the damage. The SIMS images are consistent with histopathological results and they additionally provide information about distribution of chemical compound which is a new potential tool for the liver disease characterisation on molecular level.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Espectrometría de Masas , Animales , Hígado/citología , Masculino , Ratas , Ratas Wistar
6.
Electrochim Acta ; 235: 471-479, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109588

RESUMEN

An extensive characterization of pristine and oxidized Ti3C2Tx (T: =O, -OH, -F) MXene showed that exposure of MXene to an anodic potential in the aqueous solution oxidizes the nanomaterial forming TiO2 layer or TiO2 domains with subsequent TiO2 dissolution by F- ions, making the resulting nanomaterial less electrochemically active compared to the pristine Ti3C2Tx. The Ti3C2Tx could be thus applied for electrochemical reactions in a cathodic potential window i.e. for ultrasensitive detection of H2O2 down to nM level with a response time of approx. 10 s. The manuscript also shows electrochemical behavior of Ti3C2Tx modified electrode towards oxidation of NADH and towards oxygen reduction reactions.

7.
Chemphyschem ; 17(15): 2295-9, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27128204

RESUMEN

Supramolecular surface nanostructures have application potential as functional devices. The complex combination of thiolated cyclodextrin, chemisorbed on an Au surface (Au-S-CD), with deposited Fe species is studied by secondary ion mass spectrometry. The Fe species are prepared by pulsed laser ablation in water and thermal effusion in vacuum. Using laser ablation in water, the solution of Fe species is dropped on Au-S-CD, where mass peaks at 1227 m/z, 1243 m/z, and 1260 m/z are observed and assigned to C42 H68 O34 SNa-Fe(+) , C42 H68 O34 SK-Fe(+) together with C42 H68 O34 SNa-FeO(+) , and C42 H68 O34 SK-FeO(+) , respectively. On the other hand, laser ablation directly linked to the Au-S-CD surface results in desorption of CD-S. Thermal effusion, even with a cooled surface, was negative with respect to the complex observation. Laser ablation results in the formation of a supramolecular host-guest complex of the form Au-S-CD-Fe, and in the formation of an adduct of the form Au-S-CD-FeO.

8.
Chemphyschem ; 16(10): 2110-3, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-25917001

RESUMEN

Supramolecular complexes between cyclodextrin and iron species are studied by using secondary ion mass spectrometry. The iron species are prepared by pulsed-laser ablation of bulk iron in water; this gives Fe(+) (56 m/z) and Fex Oy (+) (x, y=1-7) species. Cyclodextrin is added to the water either before or after the laser ablation. When it is added before laser ablation, molecular fragments of cyclodextrin are detected as dehydrated glucopyranose units (C6 H8 O4 (+) ) associated with Fe(+) , FeO(+) , and Fe2 O(+) species. The focus is to observe supramolecular host-guest complexes or adducts between intact molecules of cyclodextrin and iron species. When cyclodextrin is added after laser ablation, the relevant peak at 1210 m/z is observed and assigned as C42 H67 O35 FeNa(+) , which corresponds to a cyclodextrin molecule minus three H atoms. Two possible explanations of this finding are the presence of the host-guest C42 H67 O35 Na-Fe complex, in which Fe is in the cavity, or the presence of the adduct C42 H67 O34 Na-FeO with FeO on the outer surface; the formation of these complexes are supported by the hydrophobicity of Fe and hydrophilicity of FeO, respectively. Due to the presence of 12 % of intact C42 H70 O35 Na-Fe complex and an estimated Fe/FeO ratio of approximately 10(2) , host-guest formation is assumed to be more significant.

9.
Chemphyschem ; 16(11): 2466-73, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26033679

RESUMEN

The solvation and confinement of coumarin C153 within supramolecular host/guest complexes based on ß-cyclodextrin (ß-CD) and 6-deoxy-6-thio-ß-cyclodextrin (ß-CD-SH) in water are studied by fluorescence spectroscopy. For ß-CD/C153, the 1:1 complex is proposed, and for ß-CD-SH/C153 both the 1:1 and 2:1 complexes are believed to be formed. The 2:1 ß-CD-SH/C153 complex has an association constant of 4.2×10(5) M(-1) and a C153 population of 82 %, which are interestingly high values, indicating that the proposed ß-CD-SH dimers structure are connected by covalent disulfide bonds; this is supported by mass spectrometry. Solvation related to fast hydrogen-bond rearrangement as a part of fluorescence relaxation is determined by the ultrafast components of time-resolved spectroscopy to be 3 and 7 ps for the 1:1 ß-CD/C153 and 2:1 ß-CD-SH/C153 complexes, respectively.

10.
Sci Rep ; 14(1): 9779, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684688

RESUMEN

One of the major functions of the larval salivary glands (SGs) of many Drosophila species is to produce a massive secretion during puparium formation. This so-called proteinaceous glue is exocytosed into the centrally located lumen, and subsequently expectorated, serving as an adhesive to attach the puparial case to a solid substrate during metamorphosis. Although this was first described almost 70 years ago, a detailed description of the morphology and mechanical properties of the glue is largely missing. Its main known physical property is that it is released as a watery liquid that quickly hardens into a solid cement. Here, we provide a detailed morphological and topological analysis of the solidified glue. We demonstrated that it forms a distinctive enamel-like plaque that is composed of a central fingerprint surrounded by a cascade of laterally layered terraces. The solidifying glue rapidly produces crystals of KCl on these alluvial-like terraces. Since the properties of the glue affect the adhesion of the puparium to its substrate, and so can influence the success of metamorphosis, we evaluated over 80 different materials for their ability to adhere to the glue to determine which properties favor strong adhesion. We found that the alkaline Sgs-glue adheres strongly to wettable and positively charged surfaces but not to neutral or negatively charged and hydrophobic surfaces. Puparia formed on unfavored materials can be removed easily without leaving fingerprints or cascading terraces. For successful adhesion of the Sgs-glue, the material surface must display a specific type of triboelectric charge. Interestingly, the expectorated glue can move upwards against gravity on the surface of freshly formed puparia via specific, unique and novel anatomical structures present in the puparial's lateral abdominal segments that we have named bidentia.


Asunto(s)
Larva , Glándulas Salivales , Animales , Larva/crecimiento & desarrollo , Glándulas Salivales/metabolismo , Adhesivos/metabolismo , Drosophila/metabolismo , Metamorfosis Biológica , Pupa/crecimiento & desarrollo
11.
Anal Chim Acta ; 1227: 340310, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36089320

RESUMEN

In this article we describe construction of a bioreceptive interface for detection of a breast cancer biomarker carbohydrate antigen CA15-3. The conductive interface was patterned by a 2D nanomaterial MXene, to which a mixed layer containing sulfobetaine and carboxybetaine was electrochemically grafted through a diazonium moiety. Such a modified interface was then applied for covalent immobilisation of anti-CA15-3 antibody as a bioreceptive probe for detection of a breast cancer biomarker. Two different strategies were applied for final construction of an immunosensor i.e. an interface finally blocked by bovine serum albumin or an immunosensor without such modification. Finally, electrochemical reading was accomplished using a soluble redox probe Ru(NH3)63+ ion for detection of CA15-3 in a clinically relevant range up to 50 U mL-1. The results indicate that immunosensor based on non-blocked interface can be applied for biosensing using two modes of action: 1. differential pulse voltammetry (a plot of a peak current vs. analyte concentration) and 2. an electrochemical impedance spectroscopy (a plot of a charge transfer resistance vs. analyte concentration). The electrode blocked by bovine serum albumin (BSA) can be used by additional 3. mode of action: through detection of changes in the potential (a plot Epvs. c). Additionally, we reveal and explain that Ru(NH3)63+ is redox probe, which can be applied as interfacial molecular nanoscale ruler to distinguish negatively charged protein molecules present in the close proximity (≤ 6 nm) of the electrode (in our case adsorbed BSA molecules) from the negatively charged protein molecules at a larger distance (>12 nm) from the electrode (i.e. CA15-3 analyte).


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Femenino , Humanos , Inmunoensayo/métodos , Mucina-1 , Oxidación-Reducción , Compuestos de Rutenio , Albúmina Sérica Bovina
12.
J Photochem Photobiol B ; 213: 112048, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33142214

RESUMEN

Iron availability to cells may be modified in the tumour microenvironment, which may be involved in treatment response. Iron availability affects the conversion of protoporphyrin IX to heme, which likely determines the efficacy of aminolevulinic acid-based photodynamic therapy (ALA-based PDT). We compared photoinactivation efficacy in three oesophageal cell lines in culture media differing in iron content, DMEM and RPMI 1640, and in RPMI 1640 supplemented with iron to understand the importance of iron presence for ALA-based PDT outcome. ALA-based PDT was more efficacious in DMEM than in RPMI 1640 in all tested cell lines. Consistently, the highest protoporphyrin IX fluorescence signals, indicating the highest level of protoporphyrin IX production, were detected from cell colonies incubated in DMEM compared to those incubated in RPMI 1640 irrespective of iron presence. Components in the culture media other than iron ions are likely to be responsible for the observed differences in two culture media. Nevertheless, iron supplementation to RPMI 1640 showed that the presence of ferric ions in the concentration range 0-8 mg/l affected ALA-based PDT efficacy in a cell type-dependent manner. In poorly differentiated carcinoma cells, the increased efficacy of ALA-induced photoinactivation in the presence of 0.1 mg/l of supplemented iron was found. At the same iron concentration, the slightly different mitochondrial potential at no modifications of the iron labile pool was observed. The efficacy of ALA-based PDT in vitro depends on the choice of culture medium and the presence of iron ions in culture medium depending on intrinsic properties of cells.


Asunto(s)
Ácido Aminolevulínico/química , Medios de Cultivo/química , Hierro/química , Fármacos Fotosensibilizantes/química , Ácido Aminolevulínico/metabolismo , Línea Celular , Hemo/química , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fotoquimioterapia , Fármacos Fotosensibilizantes/metabolismo , Protoporfirinas/química , Espectrometría de Fluorescencia
13.
J Biotechnol ; 324S: 100018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34154733

RESUMEN

We examined the responsiveness of unicellular green alga Dunalliela tertiolecta to selected stressors employing confocal- and time-resolved imaging of endogenous fluorescence. Our aim was to monitor cell endogenous fluorescence changes under exposure to heavy metal Cd, acidification, as well as light by laser-induced photobleaching. The accumulation of Cd in algae cells was confirmed by the secondary ion mass spectroscopy technique. For the first time, custom-made computational techniques were employed to evaluate separately the fluorescence in the flagella vs. the body region. In the presence of Cd, we recorded increase in the green fluorescence in the flagella region in the form of opacities, without change in the fluorescence lifetimes, suggesting higher availability of the fluorescent molecules. Under acidification, we noted significant rise in the green fluorescence in the flagella region, but associated with longer fluorescence lifetimes, pointing to changes in the algae environment. Photobleaching experiments corroborated gathered observations. Obtained data support a differential responsiveness of the flagella vs. the body region to stressors and enable us to better understand the pathophysiological changes of algal cells in culture under stress conditions.


Asunto(s)
Chlorophyceae , Chlorophyta , Fluorescencia , Laboratorios
14.
Front Chem ; 8: 553, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793549

RESUMEN

For efficient and effective utilization of MXene such as biosensing or advanced applications, interfacial modification of MXene needs to be considered. To this end, we describe modification of Ti3C2Tx MXene by aryldiazonium-based grafting with derivatives bearing a sulfo- (SB) or carboxy- (CB) betaine pendant moiety. Since MXene contains free electrons, betaine derivatives could be grafted to MXene spontaneously. Kinetics of spontaneous grafting of SB and CB toward MXene was electrochemically examined in two different ways, and such experiments confirmed much quicker spontaneous SB grafting compared to spontaneous CB grafting. Moreover, a wide range of electrochemical methods investigating non-Faradaic and Faradaic redox behavior also in the presence of two redox probes together with contact-angle measurements and secondary ion mass spectrometry (SIMS) confirmed substantial differences in formation and interfacial presentation of betaine layers, when spontaneously grafted on MXene. Besides spontaneous grafting of CB and SB toward MXene, also electrochemical grafting by a redox trigger was performed. Results suggest that electrochemical grafting provides a denser layer of SB and CB on the MXene interface compared to spontaneous grafting of SB and CB. Moreover, an electrochemically grafted SB layer offers much lower interfacial resistance and an electrochemically active surface area compared to an electrochemically grafted CB layer. Thus, by adjusting the SB/CB ratio in the solution during electrochemical grafting, it is possible to effectively tune the redox behavior of an MXene-modified interface. Finally, electrochemically grafted CB and SB layers on MXene were evaluated against non-specific protein binding and compared to the anti-fouling behavior of an unmodified MXene interface.

15.
Sci Rep ; 7(1): 5953, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729560

RESUMEN

Secondary ion mass spectrometry is an excellent technique of analytical chemistry, where primary ions sputter a solid sample generating the secondary ions which are determined. Although the ion yield is inherently low, it can be enhanced by using a post-ionization of sputtered neutral species. Our novel approach integrates this technique with a near infrared femtosecond laser post-ionization based on an adaptive control through a laser pulse shaper. The shaping of the laser pulse provides adaptive control to select a mass peak of interest and to enhance this peak intensity. Versatility is confirmed by optimizing the ion yield for different molecules (tryptophan, anthracene, polyethylene, and oxalic acid) with focus on parent ion enhancement, fragmentation process, sublimation effect, and excited secondary species. This proof-of-concept experiment provides not only a nonspecific increase of the overall ion yield, but also the selection of specific secondary species and the adaptive enhancement of their intensities on the order of 100, potentially simplifying data interpretation. Such tailored spectra might advance the (secondary ion) mass spectrometry to new capabilities.

16.
J Am Soc Mass Spectrom ; 23(7): 1266-70, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22547137

RESUMEN

An alternative secondary ion mass spectrometry utilizing laser preionization is introduced. The native Ag sample surface is first irradiated with laser pulse (100 fs duration, 10(10)-10(11) W/cm(2) intensity, 1240 nm wavelength) and subsequently bombarded with primary ions (Bi(3)(+), 10 ns duration, 25 keV energy). Multiple correlation patterns are observed in the mass spectra, confirming the mutual laser-secondary ion mass spectrometry (SIMS) interplay in the preionization mechanism. The Ag(+), C(3)H(5)(+), C(3)H(5)O(3)(+), and AgOH(+), C(4)H(5)O(4)(+) are observed with the shallow and steep increasing of intensities at 1.3 × 10(11) W/cm(2) and 1.5 × 10(11) W/cm(2), respectively. Two ionization mechanisms are identified, the ion sputtering regime for intensities of less than 1.4 × 10(11) W/cm(2) and the multiphoton ionization at higher intensities. The Ag saturation intensity obtained from fitting is 2.4 × 10(13) W/cm(2), close to the one reported for postionization. The proposed preionization approach might eliminate the need for high peak power/high intensity laser source and, moreover, the experiment geometry ensures that large areas of the sample are affected by the laser beam.

17.
J Am Soc Mass Spectrom ; 22(12): 2179-87, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21952781

RESUMEN

A technique for improving the sensitivity of high mass molecular analysis is described. Three carbon species, fullerenes, single walled carbon nanotubes, and highly ordered pyrolytic graphite are introduced as matrices for the secondary ion mass spectrometry analysis of cyclodextrin (C(42)H(70)O(35), 1134 u). The fullerene and nanotubes are deposited as single deposition, and 10, 20, or 30 deposition films and cyclodextrin is deposited on top. The cyclodextrin parent-like ions and two fragments were analyzed. A 30 deposition fullerene film enhanced the intensity of cationized cyclodextrin with Na by a factor of 37. While the C(6)H(11)O(5) fragment, corresponding to one glucopyranose unit, increased by a factor of 16. Although fragmentation on fullerene is not suppressed, the intensity is twice as low as the parent-like ion. Deprotonated cyclodextrin increases by 100× and its C(8)H(7)O fragment by 10×. While the fullerene matrix enhances secondary ion emission, the nanotubes matrix film generates a basically constant yield. Graphite gives rise to lower intensity peaks than either fullerene or nanotubes. Scanning electron microscopy and atomic force microscopy provide images of the fullerene and nanotubes deposition films revealing flat and web structured surfaces, respectively. A "colliding ball" model is presented to provide a plausible physical mechanism of parent-like ion enhancement using the fullerene matrix.


Asunto(s)
Ciclodextrinas/análisis , Fulerenos/química , Grafito/química , Espectrometría de Masas/métodos , Nanotubos/química , Ciclodextrinas/química , Microscopía Electrónica de Rastreo , Nanotubos/ultraestructura
18.
Mol Imaging Biol ; 13(6): 1067-76, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21161688

RESUMEN

PURPOSE: Identification and localization of biomolecules in cells and tissue samples are important for understanding of subcellular structures and can be helpful in biomedical and pharmaceutical research. PROCEDURES: Isolated cardiac cells and tissue of rats are studied by using time-of-flight secondary ion mass spectrometry. This technique provides chemical composition of cardiac cell membrane and tissue surface in native form. RESULTS: The result is a spatially resolved chemical imaging of cell and tissue surfaces as a lateral distribution of biologically relevant molecules-phospholipids, along with fatty acids, and cholesterol. Phospholipids are represented by phosphatidylcholine and cardiolipin molecules and their fragments. Phosphatidylcholine polar head group at mass of 184.1 u has an origin in the cell membrane, and a two-dimensional distribution of this fragment provides clear chemical contours of the cell. The high-resolution contrast of the cell is observed within its environment represented with Na(+) ions. Images of PO(4)H(-) fragment and fatty acids with 16 or 18 C atoms are determined in cardiac tissue. Distributions of these 16 and 18 C fatty acids are the same within their groups, and interestingly, these two distribution groups are spatially complementary. Contours of phosphatidylcholine and cardiolipin fragments are also complementary, the distributions of 16 C fatty acids and phosphatidylcholine are identical, and the distributions of 18 C fatty acids and cardiolipin are also the same. This complementarity thus supports the chemical compositions of phosphatidylcholine and cardiolipin based on 16 C and 18 C fatty acids, respectively. CONCLUSION: The method provides information not only about cell and tissue morphology, shape, and condition but also about cellular membrane chemical composition and lateral distribution of biologically relevant molecules.


Asunto(s)
Miocardio/citología , Miocardio/metabolismo , Espectrometría de Masa de Ion Secundario/métodos , Animales , Membranas , Análisis de Componente Principal , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA