RESUMEN
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human milk oligosaccharides (HMOs) providing additional support by inhibiting pathogen binding to host cell ligands. The prebiotic and immune-modulatory activity of HMOs strongly depends on their structure. Over 200 individual structures have been identified so far, with the composition varying significantly among women. The structure and composition of HMOs are influenced by factors such as the Lewis blood group, secretor status, and the duration of nursing. HMO profiles are heavily influenced by maternal phenotypes, which are defined based on the expression of two specific fucosyltransferases. However, recent data have shown that HMO content can be modified by various factors, both changeable and unchangeable, including diet, maternal age, gestational age, mode of delivery, breastfeeding frequency, and race. The first part of this overview presents the historical background of these sugars and the efforts by scientists to extract them using the latest chromatography methods. The second part is divided into subchapters that examine modifiable and non-modifiable factors, reviewing the most recent articles on HMO composition variations due to specific reasons and summarizing potential future challenges in conducting these types of studies.
Asunto(s)
Leche Humana , Oligosacáridos , Leche Humana/química , Humanos , Oligosacáridos/análisis , Femenino , Lactancia Materna , Antígenos del Grupo Sanguíneo de Lewis , Prebióticos , DietaRESUMEN
Free-living amoebae (FLA) are prevalent in diverse environments, representing various genera and species with different pathogenicity. FLA-induced infections, such as the highly fatal amoebic encephalitis, with a mortality rate of 99%, primarily affect immunocompromised individuals while others such as Acanthamoeba keratitis (AK) and cutaneous amebiasis may affect immunocompetent individuals. Despite the prevalence of FLA, there is a lack of standardized guidelines for their detection near human habitats. To date, no studies on the isolation and identification of FLA in environmental soil samples in Warsaw have been published. The aim of this study was to determine the presence of amoebae in soil samples collected from Warsaw parks and squares frequented by humans. The isolated protozoa were genotyped. Additionally, their pathogenic potential was determined through thermophilicity tests. A total of 23 soil samples were seeded on non-nutrient agar plates (NNA) at 26 °C and monitored daily for FLA presence. From the total of 23 samples, 18 were positive for FLA growth in NNA and PCR (78.2%). Acanthamoeba spp. was the most frequently isolated genus, with a total of 13 positive samples (13/18; 72.2%), and the T4 genotype being the most common. Moreover, Platyamoeba placida (3/18; 16.7%), Stenamoeba berchidia (1/18; 5.6%) and Allovahlkampfia sp. (1/18; 5.6%), also potentially pathogenic amoebae, were isolated. To our knowledge, this is the first report of FLA presence and characterization in the Warsaw area.
RESUMEN
Here, we describe functional characterization of an early gene (gp46) product of a virulent Lactococcus lactis sk1-like phage, vB_Llc_bIBBF13 (abbr. F13). The GP46 F13 protein carries a catalytically active RecA-like domain belonging to the P-loop NTPase superfamily. It also retains features characteristic for ATPases forming oligomers. In order to elucidate its detailed molecular function, we cloned and overexpressed the gp46 gene in Escherichia coli. Purified GP46 F13 protein binds to DNA and exhibits DNA unwinding activity on branched substrates in the presence of adenosine triphosphate (ATP). Size exclusion chromatography with multi-angle light scattering (SEC-MALS) experiments demonstrate that GP46 F13 forms oligomers, and further pull-down assays show that GP46 F13 interacts with host proteins involved in replication (i.e., DnaK, DnaJ, topoisomerase I, and single-strand binding protein). Taking together the localization of the gene and the obtained results, GP46 F13 is the first protein encoded in the early-expressed gene region with helicase activity that has been identified among lytic L. lactis phages up to date.
RESUMEN
LactococcusCeduovirus (formerly c2virus) bacteriophages are among the three most prevalent phage types reported in dairy environments. Phages from this group conduct a strictly lytic lifestyle and cause substantial losses during milk fermentation processes, by infecting lactococcal host starter strains. Despite their deleterious activity, there are limited research data concerning Ceduovirus phages. To advance our knowledge on this specific phage group, we sequenced and performed a comparative analysis of 10 new LactococcuslactisCeduovirus phages isolated from distinct dairy environments. Host range studies allowed us to distinguish the differential patterns of infection of L. lactis cells for each phage, and revealed a broad host spectrum for most of them. We showed that 40% of the studied Ceduovirus phages can infect both cremoris and lactis strains. A preference to lyse strains with the C-type cell wall polysaccharide genotype was observed. Phage whole-genome sequencing revealed an average nucleotide identity above 80%, with distinct regions of divergence mapped to several locations. The comparative approach for analyzing genomic data and the phage lytic spectrum suggested that the amino acid sequence of the orf8-encoded putative tape measure protein correlates with host range. Phylogenetic studies revealed separation of the sequenced phages into two subgroups. Finally, we identified three types of phage origin of replication regions, and showed they are able to support plasmid replication without additional phage proteins.
Asunto(s)
Bacteriófagos/fisiología , Lactococcus/virología , Plantas Comestibles/microbiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Clonación Molecular , Genoma Viral , Genómica , Especificidad del Huésped , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Fenómenos Fisiológicos de los VirusRESUMEN
The major barrier to effective cancer therapy is the presence of genetic and phenotypic heterogeneity within cancer cell populations that provides a reservoir of therapeutically resistant cells. As the degree of heterogeneity present within tumours will be proportional to tumour burden, the development of rapid, robust, accurate and sensitive biomarkers for cancer progression that could detect clinically occult disease before substantial heterogeneity develops would provide a major therapeutic benefit. Here, we explore the application of chromatin conformation capture technology to generate a diagnostic epigenetic barcode for melanoma. The results indicate that binary states from chromatin conformations at 15 loci within five genes can be used to provide rapid, non-invasive multivariate test for the presence of melanoma using as little as 200 µl of patient blood.