Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
New Phytol ; 241(5): 2209-2226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084045

RESUMEN

R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Transporte de Proteínas , Estructuras R-Loop , ARN/metabolismo , ARN Helicasas/genética
2.
New Phytol ; 240(2): 676-693, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37545368

RESUMEN

Reactive carbonyl species (RCS) derived from lipid peroxides can act as critical damage or signaling mediators downstream of reactive oxygen species by modifying target proteins. However, their biological effects and underlying mechanisms remain largely unknown in plants. Here, we have uncovered the mechanism by which the RCS 4-hydroxy-(E)-2-nonenal (HNE) participates in photosystem II (PSII) repair cycle of chloroplasts, a crucial process for maintaining PSII activity under high and changing light conditions. High Light Sensitive 1 (HLT1) is a potential NADPH-dependent reductase in chloroplasts. Deficiency of HLT1 had no impact on the growth of Arabidopsis plants under normal light conditions but increased sensitivity to high light, which resulted from a defective PSII repair cycle. In hlt1 plants, the accumulation of HNE-modified D1 subunit of PSII was observed, which did not affect D1 degradation but hampered the dimerization of repaired PSII monomers and reassembly of PSII supercomplexes on grana stacks. HLT1 is conserved in all photosynthetic organisms and has functions in overall growth and plant fitness in both Arabidopsis and rice under naturally challenging field conditions. Our work provides the mechanistic basis underlying RCS scavenging in light acclimation and suggests a potential strategy to improve plant productivity by manipulating RCS signaling in chloroplasts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Aclimatación , Luz
3.
Plant Physiol ; 189(4): 2128-2143, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35385122

RESUMEN

In oxygenic photosynthesis, NADP+ acts as the final acceptor of the photosynthetic electron transport chain and receives electrons via the thylakoid membrane complex photosystem I (PSI) to synthesize NAPDH by the enzyme ferredoxin:NADP+ oxidoreductase. The NADP+/NADPH redox couple is essential for cellular metabolism and redox homeostasis. However, how the homeostasis of these two dinucleotides is integrated into chloroplast biogenesis remains largely unknown. Here, we demonstrate the important role of NADP+ supply for the biogenesis of PSI by examining the nad kinase 2 (nadk2) mutant in Arabidopsis (Arabidopsis thaliana), which demonstrates disrupted synthesis of NADP+ from NAD+ in chloroplasts. Although the nadk2 mutant is highly sensitive to light, the reaction center of photosystem II (PSII) is only mildly and likely only secondarily affected compared to the wild-type. Our studies revealed that the primary limitation of photosynthetic electron transport, even at low light intensities, occurs at PSI rather than at PSII in the nadk2 mutant. Remarkably, this primarily impairs the de novo synthesis of the two PSI core subunits PsaA and PsaB, leading to the deficiency of the PSI complex in the nadk2 mutant. This study reveals an unexpected molecular link between NADK activity and mRNA translation of psaA/B in chloroplasts that may mediate a feedback mechanism to adjust de novo biosynthesis of the PSI complex in response to a variable NADPH demand. This adjustment may be important to protect PSI from photoinhibition under conditions that favor acceptor side limitation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Transporte de Electrón , Ferredoxina-NADP Reductasa/metabolismo , Luz , NADP/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068997

RESUMEN

A promising approach for the genetic engineering of multiprotein complexes in living cells involves designing and reconstructing the interaction between two proteins that lack native affinity. Thylakoid-embedded multiprotein complexes execute the light reaction of plant photosynthesis, but their engineering remains challenging, likely due to difficulties in accurately targeting heterologous membrane-bound proteins to various sub-compartments of thylakoids. In this study, we developed a ubiquitin-based module (Nub-Cub) capable of directing interactions in vivo between two chloroplast proteins lacking native affinities. We applied this module to genetically modify thylakoid multiprotein complexes. We demonstrated the functionality of the Nub-Cub module in the model organism Arabidopsis thaliana. Employing this system, we successfully modified the Photosystem II (PSII) complex by ectopically attaching an extrinsic subunit of PSII, PsbTn1, to CP26-a component of the antenna system of PSII. Surprisingly, this mandatory interaction between CP26 and PsbTn1 in plants impairs the efficiency of electron transport in PSII and unexpectedly results in noticeable defects in leaf development. Our study not only offers a general strategy to modify multiprotein complexes embedded in thylakoid membranes but it also sheds light on the possible interplay between two proteins without native interaction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética
5.
Plant Cell ; 31(6): 1308-1327, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30962391

RESUMEN

A key characteristic of chloroplast gene expression is the predominance of posttranscriptional control via numerous nucleus-encoded RNA binding factors. Here, we explored the essential roles of the S1-domain-containing protein photosynthetic electron transfer B (petB)/ petD Stabilizing Factor (BSF) in the stabilization and translation of chloroplast mRNAs. BSF binds to the intergenic region of petB-petD, thereby stabilizing 3' processed petB transcripts and stimulating petD translation. BSF also binds to the 5' untranslated region of petA and activates its translation. BSF displayed nucleic-acid-melting activity in vitro, and its absence induces structural changes to target RNAs in vivo, suggesting that BSF functions as an RNA chaperone to remodel RNA structure. BSF physically interacts with the pentatricopeptide repeat protein Chloroplast RNA Processing 1 (AtCRP1) and the ribosomal release factor-like protein Peptide chain Release Factor 3 (PrfB3), whose established RNA ligands overlap with those of BSF. In addition, PrfB3 stimulated the RNA binding ability of BSF in vitro. We propose that BSF and PrfB3 cooperatively reduce the formation of secondary RNA structures within target mRNAs and facilitate AtCRP1 binding. The translation activation function of BSF for petD is conserved in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays), but that for petA operates specifically in Arabidopsis. Our study sheds light on the mechanisms by which RNA binding proteins cooperatively regulate mRNA stability and translation in chloroplasts.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estabilidad del ARN/fisiología , Zea mays/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estabilidad del ARN/genética , Zea mays/genética
6.
Plant Cell ; 26(12): 4918-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25480370

RESUMEN

Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding ß-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Plastidios/genética , Proteínas de Unión al ARN/fisiología , Ribulosa-Bifosfato Carboxilasa/genética , Terminación de la Transcripción Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plastidios/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
Plant Physiol ; 158(2): 693-707, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22170977

RESUMEN

The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.


Asunto(s)
Arabidopsis/metabolismo , ARN Helicasas DEAD-box/metabolismo , Subunidades Ribosómicas/metabolismo , Arabidopsis/enzimología , Cloroplastos/metabolismo , ARN Helicasas DEAD-box/genética , Técnicas de Silenciamiento del Gen , ARN Mensajero/genética
8.
Plant Physiol ; 160(4): 1911-22, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23043079

RESUMEN

The biogenesis and assembly of photosynthetic multisubunit protein complexes is assisted by a series of nucleus-encoded auxiliary protein factors. In this study, we characterize the dac mutant of Arabidopsis (Arabidopsis thaliana), which shows a severe defect in the accumulation of the cytochrome b(6)/f complex, and provide evidence suggesting that the efficiency of cytochrome b(6)/f complex assembly is affected in the mutant. DAC is a thylakoid membrane protein with two predicted transmembrane domains that is conserved from cyanobacteria to vascular plants. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation analyses revealed a specific interaction between DAC and PetD, a subunit of the cytochrome b(6)/f complex. However, DAC was found not to be an intrinsic component of the cytochrome b(6)/f complex. In vivo chloroplast protein labeling experiments showed that the labeling rates of the PetD and cytochrome f proteins were greatly reduced, whereas that of the cytochrome b(6) protein remained normal in the dac mutant. DAC appears to be a novel factor involved in the assembly/stabilization of the cytochrome b(6)/f complex, possibly through interaction with the PetD protein.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo de Citocromo b6f/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Polirribosomas/metabolismo , Unión Proteica , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Espectrometría de Fluorescencia , Fracciones Subcelulares/metabolismo , Sacarosa/metabolismo , Proteínas de las Membranas de los Tilacoides/química , Proteínas de las Membranas de los Tilacoides/genética , Tilacoides/metabolismo
9.
Plant J ; 64(1): 14-25, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20626654

RESUMEN

The pentatricopeptide-repeat (PPR) protein DELAYED GREENING 1 (DG1) has been shown to be involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. To gain insight into the mode of DG1 action, we used a yeast two-hybrid screening approach and identified a partner, SIG6, which is a chloroplast sigma factor responsible for the transcription of plastid-encoded RNA polymerase (PEP)-dependent chloroplast genes in cotyledons. Further analysis showed that the C-terminal region of DG1 and the N-terminal region of SIG6 are responsible for such interactions. High-level expression of a truncated C-terminal DG1 in wild-type Arabidopsis caused a dominant-negative phenotype. The sig6 dg1 double mutant displayed a more severe chlorotic phenotype, and the PEP-dependent chloroplast gene transcripts were greatly reduced compared with transcript levels in the single mutants. Overexpression of SIG6 rescued the chlorophyll deficiency in dg1 cotyledons but not in young leaves. In addition, increased SIG6 promoted PEP-dependent chloroplast gene transcript accumulation in the dg1 mutant background. These results suggest that the interaction of DG1 and SIG6 is functionally significant in the regulation of PEP-dependent chloroplast gene transcription in Arabidopsis cotyledons.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/genética , Cotiledón/crecimiento & desarrollo , Factor sigma/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/análisis , Cloroplastos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Dominios y Motivos de Interacción de Proteínas , ARN del Cloroplasto/genética , Factor sigma/genética , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
10.
Biochim Biophys Acta Bioenerg ; 1860(1): 69-77, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414934

RESUMEN

Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.


Asunto(s)
Cloroplastos/genética , Terminación de la Transcripción Genética , Arabidopsis/genética , Transcripción Genética
11.
PLoS One ; 7(11): e49746, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166764

RESUMEN

LEPA is one of the most conserved translation factors and is found from bacteria to higher plants. However, the physiological function of the chloroplast LEPA homolog in higher plants remains unknown. Herein, we demonstrate the physiological role of cpLEPA in enabling efficient photosynthesis in higher plants. The cplepa-1 mutant displays slightly high chlorophyll fluorescence and pale green phenotypes under normal growth conditions. The growth of the cplepa-1 mutant is reduced when grown on soil, and greater reduction is observed under intense light illumination. Photosynthetic activity is impaired in the cplepa-1 mutants, which is reflected in the decreased steady-state levels of chloroplast proteins. In vivo protein labeling experiments explained the decrease in the steady-state levels of chloroplast proteins. An abnormal association of the chloroplast-encoded mRNAs with ribosomes suggests that the protein synthesis deficiencies in cplepa-1 are due to defects in translation initiation in the chloroplasts. The cpLEPA protein appears to be an essential translation factor that promotes the efficiency of chloroplast protein synthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Factores Eucarióticos de Iniciación/genética , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Orden Génico , Datos de Secuencia Molecular , Mutación , Factor G de Elongación Peptídica/química , Fenotipo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas , Alineación de Secuencia , Tilacoides/metabolismo
12.
Plant Physiol ; 150(3): 1260-71, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19448041

RESUMEN

To gain insight into the molecular mechanism of RNA editing, we have characterized the low psii accumulation66 (lpa66) Arabidopsis (Arabidopsis thaliana) mutant, which displays a high chlorophyll fluorescence phenotype. Its perturbed chlorophyll fluorescence is reflected in reduced levels of photosystem II (PSII) proteins. In vivo protein labeling showed that synthesis rates of the PSII reaction center protein D1/D2 were lower, and turnover rates of PSII core proteins higher, than in wild-type counterparts. The assembly of newly synthesized proteins into PSII occurs in the lpa66 mutant but with reduced efficiency compared with the wild type. LPA66 encodes a chloroplast protein of the pentatricopeptide repeat family. In lpa66 mutants, editing of psbF that converts serine to phenylalanine is specifically impaired. Thus, LPA66 is specifically required for editing the psbF transcripts in Arabidopsis, and the amino acid alternation due to lack of editing strongly affects the efficiency of the assembly of PSII complexes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Edición de ARN/fisiología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Clonación Molecular , Datos de Secuencia Molecular , Mutación , Complejo de Proteína del Fotosistema II/metabolismo , Biosíntesis de Proteínas/genética , Estructura Terciaria de Proteína , Edición de ARN/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA