Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35575074

RESUMEN

Recent evidence has shown that presenilin enhancer 2 (Pen2; Psenen) plays an essential role in corticogenesis by regulating the switch of apical progenitors (APs) to basal progenitors (BPs). The hippocampus is a brain structure required for advanced functions, including spatial navigation, learning and memory. However, it remains unknown whether Pen2 is important for hippocampal morphogenesis. To address this question, we generated Pen2 conditional knockout (cKO) mice, in which Pen2 is inactivated in neural progenitor cells (NPCs) in the hippocampal primordium. We showed that Pen2 cKO mice exhibited hippocampal malformation and decreased population of NPCs in the neuroepithelium of the hippocampus. We found that deletion of Pen2 neither affected the proliferative capability of APs nor the switch of APs to BPs in the hippocampus, and that it caused enhanced transition of APs to neurons. We demonstrated that expression of the Notch1 intracellular domain (N1ICD) significantly increased the population of NPCs in the Pen2 cKO hippocampus. Collectively, this study uncovers a crucial role for Pen2 in the maintenance of NPCs during hippocampal development.


Asunto(s)
Hipocampo , Neuronas , Animales , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Neuronas/metabolismo , Presenilinas/metabolismo
2.
J Neuroinflammation ; 20(1): 69, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906561

RESUMEN

BACKGROUND: Microglial activation-mediated neuroinflammation is one of the essential pathogenic mechanisms of sepsis-associated encephalopathy (SAE). Mounting evidence suggests that high mobility group box-1 protein (HMGB1) plays a pivotal role in neuroinflammation and SAE, yet the mechanism by which HMGB1 induces cognitive impairment in SAE remains unclear. Therefore, this study aimed to investigate the mechanism of HMGB1 underlying cognitive impairment in SAE. METHODS: An SAE model was established by cecal ligation and puncture (CLP); animals in the sham group underwent cecum exposure alone without ligation and perforation. Mice in the inflachromene (ICM) group were continuously injected with ICM intraperitoneally at a daily dose of 10 mg/kg for 9 days starting 1 h before the CLP operation. The open field, novel object recognition, and Y maze tests were performed on days 14-18 after surgery to assess locomotor activity and cognitive function. HMGB1 secretion, the state of microglia, and neuronal activity were measured by immunofluorescence. Golgi staining was performed to detect changes in neuronal morphology and dendritic spine density. In vitro electrophysiology was performed to detect changes in long-term potentiation (LTP) in the CA1 of the hippocampus. In vivo electrophysiology was performed to detect the changes in neural oscillation of the hippocampus. RESULTS: CLP-induced cognitive impairment was accompanied by increased HMGB1 secretion and microglial activation. The phagocytic capacity of microglia was enhanced, resulting in aberrant pruning of excitatory synapses in the hippocampus. The loss of excitatory synapses reduced neuronal activity, impaired LTP, and decreased theta oscillation in the hippocampus. Inhibiting HMGB1 secretion by ICM treatment reversed these changes. CONCLUSIONS: HMGB1 induces microglial activation, aberrant synaptic pruning, and neuron dysfunction in an animal model of SAE, leading to cognitive impairment. These results suggest that HMGB1 might be a target for SAE treatment.


Asunto(s)
Disfunción Cognitiva , Proteína HMGB1 , Encefalopatía Asociada a la Sepsis , Sepsis , Animales , Ratones , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Proteína HMGB1/metabolismo , Enfermedades Neuroinflamatorias , Sepsis/complicaciones , Encefalopatía Asociada a la Sepsis/metabolismo
3.
Neuroimmunomodulation ; 30(1): 28-41, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36599309

RESUMEN

INTRODUCTION: Inflammation in early life is a risk factor for the development of neuropsychiatric diseases later in adolescence and adulthood, yet the underlying mechanism remains elusive. In the present study, we performed an integrated proteomic and phosphoproteomic analysis of the hippocampus to identify potential molecular mechanisms of early life inflammation-induced cognitive impairment. METHODS: Both female and male mice received a single intraperitoneal injection of 100 µg/kg lipopolysaccharide (LPS) on postnatal day 10 (P10). Behavioral tests, including open field, elevated plus-maze, and Y-maze tests, were performed on P39, P40, and P41, respectively. After behavioral tests, male mice were sacrificed. The whole brain tissues and the hippocampi were harvested on P42 for proteomic, phosphoproteomic, Western blot, and Golgi staining. RESULTS: Early life LPS exposure induced cognitive impairment in male mice but not in female mice, as assessed by the Y-maze test. Therefore, following biochemical tests were conducted on male mice. By proteomic analysis, 13 proteins in LPS group exhibited differential expression. Among these, 9 proteins were upregulated and 4 proteins were downregulated. For phosphoproteomic analysis, a total of 518 phosphopeptides were identified, of which 316 phosphopeptides were upregulated and 202 phosphopeptides were downregulated in the LPS group compared with the control group. Furthermore, KEGG analysis indicated that early life LPS exposure affected the glutamatergic synapse and neuroactive ligand-receptor interaction, which were associated with synaptic function and energy metabolism. Increased level of brain protein i3 (Bri3), decreased levels of PSD-95 and mGLUR5, and dendritic spine loss after early life LPS exposure further confirmed the findings of proteomic and phosphoproteomic analysis. CONCLUSIONS: Our findings demonstrated that neuroinflammation and impaired synapse may be involved in early life inflammation-induced cognitive impairment. Future studies are required to confirm our preliminary results.


Asunto(s)
Lipopolisacáridos , Fosfopéptidos , Animales , Masculino , Femenino , Ratones , Lipopolisacáridos/toxicidad , Fosfopéptidos/efectos adversos , Fosfopéptidos/metabolismo , Proteómica , Inflamación/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
4.
BMC Anesthesiol ; 23(1): 281, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598151

RESUMEN

BACKGROUND: The application of artificial intelligence patient-controlled analgesia (AI-PCA) facilitates the remote monitoring of analgesia management, the implementation of mobile ward rounds, and the automatic recording of all types of key data in the clinical setting. However, it cannot quantify the quality of postoperative analgesia management. This study aimed to establish an index (analgesia quality index (AQI)) to re-monitor and re-evaluate the system, equipment, medical staff and degree of patient matching to quantify the quality of postoperative pain management through machine learning. METHODS: Utilizing the wireless analgesic pump system database of the Cancer Hospital Affiliated with Nantong University, this retrospective observational study recruited consecutive patients who underwent postoperative analgesia using AI-PCA from June 1, 2014, to August 31, 2021. All patients were grouped according to whether or not the AQI was used to guide the management of postoperative analgesia: The control group did not receive the AQI guidance for postoperative analgesia and the experimental group received the AQI guidance for postoperative analgesia. The primary outcome was the incidence of moderate-to-severe pain (numeric rating scale (NRS) score ≥ 4) and the second outcome was the incidence of total adverse reactions. Furthermore, indicators of AQI were recorded. RESULTS: A total of 14,747 patients were included in this current study. The incidence of moderate-to-severe pain was 26.3% in the control group and 21.7% in the experimental group. The estimated ratio difference was 4.6% between the two groups (95% confidence interval [CI], 3.2% to 6.0%; P < 0.001). There were significant differences between groups. Otherwise, the differences in the incidence of total adverse reactions between the two groups were nonsignificant. CONCLUSIONS: Compared to the traditional management of postoperative analgesia, application of the AQI decreased the incidence of moderate-to-severe pain. Clinical application of the AQI contributes to improving the quality of postoperative analgesia management and may provide guidance for optimum pain management in the postoperative setting.


Asunto(s)
Inteligencia Artificial , Manejo del Dolor , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Analgesia Controlada por el Paciente , Bases de Datos Factuales
5.
BMC Geriatr ; 22(1): 685, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35982410

RESUMEN

BACKGROUND: Postoperative delirium (POD), one of the most common complications following major surgery, imposes a heavy burden on patients and society. The objective of this exploratory study was to conduct a secondary analysis to identify whether there exist novel and reliable serum biomarkers for the prediction of POD. METHODS: A total of 131 adult patients (≥ 65 years) undergoing lower extremity orthopedic surgery with were enrolled in this study. Cognitive function was assessed preoperatively with Mini-Mental State Examination (MMSE). Delirium was diagnosed according to the Confusion Assessment Method (CAM) criteria on preoperative day and postoperative days 1-3. The preoperative serum levels of a panel of 16 biochemical parameters were measured by ELISA. RESULTS: Thirty-five patients developed POD, with an incidence of 26.7%. Patients in POD group were older (P = 0.001) and had lower preoperative MMSE scores (P = 0.001). Preoperative serum levels of prostaglandin E2 (PGE2, P < 0.001), S100ß (P < 0.001), glial fibrillary acidic protein (P < 0.001) and neurofilament light (P = 0.002) in POD group were significantly increased. Logistic regression analysis showed that advanced age (OR = 1.144, 95%CI: 1.008 ~ 1.298, P = 0.037), higher serum neurofilament light (OR = 1.003, 95%CI: 1.000 ~ 1.005, P = 0.036) and PGE2 (OR = 1.031, 95%CI: 1.018 ~ 1.044, P < 0.001) levels were associated with the development of POD. In addition, serum level of PGE2 yielded an area under the ROC curve (AUC) of 0.897 to predict POD (P < 0.001), with a sensitivity of 80% and a specificity of 83.3%. CONCLUSIONS: Our study showed that higher preoperative serum PGE2 level might be a biomarker to predict the occurrence of POD in elderly patients undergoing elective orthopedic surgery. TRIAL REGISTRATION: NCT03792373 www. CLINICALTRIALS: gov .


Asunto(s)
Delirio , Procedimientos Ortopédicos , Anciano , Biomarcadores , Delirio/diagnóstico , Delirio/epidemiología , Delirio/etiología , Dinoprostona , Humanos , Procedimientos Ortopédicos/efectos adversos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Prospectivos , Factores de Riesgo
6.
Neurobiol Dis ; 148: 105212, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33276084

RESUMEN

PDK1 (3-Phosphoinositide dependent protein kinase-1) is a member in the PI3K (phosphatidylinositol 3 kinase) pathway and is implicated in neurodevelopmental disease with microcephaly. Although the role of PDK1 in neurogenesis has been broadly studied, it remains unknown how PDK1 may regulate oligogenesis in the central nervous system (CNS). To address this question, we generated oligodendrocyte (OL) lineage cells specific PDK1 conditional knockout (cKO) mice. We find that PDK1 cKOs display abnormal white matter (WM), massive loss of mature OLs and severe defect in myelination in the CNS. In contrast, these mutants exhibit normal neuronal development and unchanged apoptosis in the CNS. We demonstrate that deletion of PDK1 severely impairs OL differentiation. We show that genetic or pharmacological inhibition of PDK1 causes deficit in the mammalian target of rapamycin (mTor) signaling and down-regulation of Sox10. Together, these results highlight a critical role of PDK1 in OL differentiation during postnatal CNS development.


Asunto(s)
Diferenciación Celular/genética , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Factores de Transcripción SOXE/genética , Sustancia Blanca/metabolismo , Animales , Línea Celular , Linaje de la Célula , Regulación hacia Abajo , Ratones , Ratones Noqueados , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Factores de Transcripción SOXE/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Surg Today ; 51(5): 756-763, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33104877

RESUMEN

PURPOSE: We used five machine-learning algorithms to predict cancer-specific mortality after surgical resection of primary non-metastatic invasive breast cancer. METHODS: This study was a secondary analysis of data for 1661 women with primary non-metastatic invasive breast cancer. The overall patient population was divided into a training group and a test group at a ratio of 8:2 and python was used for machine learning to establish the prognosis model. RESULTS: The machine-learning Gbdt algorithm for cancer-specific death caused by various factors showed the five most important factors, ranked from high to low as follows: the number of regional lymph node metastases, LDH, triglyceride, plasma fibrinogen, and cholesterol. Among the five algorithm models in the test group, the highest accuracy rate was by DecisionTree (0.841), followed by the gbm algorithm (0.838). Among the five algorithms, the AUC values from high to low were GradientBoosting (0.755), gbm (0.755), Logistic (0.733), Forest (0.715), and DecisionTree (0.677). CONCLUSION: Machine learning can predict cancer-specific mortality after surgery for patients with primary non-metastatic invasive breast.


Asunto(s)
Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/cirugía , Aprendizaje Automático , Neoplasias de la Mama/patología , Femenino , Humanos , Modelos Logísticos , Mastectomía/mortalidad , Invasividad Neoplásica , Pronóstico , Tasa de Supervivencia
8.
J Neuroinflammation ; 17(1): 23, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948437

RESUMEN

BACKGROUND: Postoperative cognitive decline (POCD) is a recognized clinical phenomenon characterized by cognitive impairments in patients following anesthesia and surgery, yet its underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory via activation of TrkB-full length (TrkB-FL) receptors. It has been reported that an abnormal truncation of TrkB mediated by calpain results in dysregulation of BDNF/TrkB signaling and is associated with cognitive impairments in several neurodegenerative disorders. Calpains are Ca2+-dependent proteases, and overactivation of calpain is linked to neuronal death. Since one source of intracellular Ca2+ is N-methyl-d-aspartate receptors (NMDARs) related and the function of NMDARs can be regulated by neuroinflammation, we therefore hypothesized that dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might be involved in the pathogenesis of POCD. METHODS: In the present study, 16-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to establish the POCD animal model. For the interventional study, mice were treated with either NMDAR antagonist memantine or calpain inhibitor MDL-28170. Behavioral tests were performed by open field, Y maze, and fear conditioning tests from 5 to 8 days post-surgery. The levels of Iba-1, GFAP, interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), NMDARs, calpain, BDNF, TrkB, bax, bcl-2, caspase-3, and dendritic spine density were determined in the hippocampus. RESULTS: Anesthesia and surgery-induced neuroinflammation overactivated NMDARs and then triggered overactivation of calpain, which subsequently led to the truncation of TrkB-FL, BDNF/TrkB signaling dysregulation, dendritic spine loss, and cell apoptosis, contributing to cognitive impairments in aging mice. These abnormities were prevented by memantine or MDL-28170 treatment. CONCLUSION: Collectively, our study supports the notion that NMDAR/Ca2+/calpain is mechanistically involved in anesthesia and surgery-induced BDNF/TrkB signaling disruption and cognitive impairments in aging mice, which provides one possible therapeutic target for POCD.


Asunto(s)
Envejecimiento/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Transducción de Señal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Calpaína/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Tirosina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Brain Behav Immun ; 89: 133-144, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32505714

RESUMEN

Neuroinflammation plays a key role in the progression of many neurodegenerative diseases, yet the underlying mechanism remains largely unexplored. Using an animal model of neuroinflammation induced by repeated lipopolysaccharide (LPS) injections, we found selectively reduced expression of parvalbumin (PV) but not somatostatin (SST) in the medial prefrontal cortex (mPFC). The reduced PV expression resulted in decreased intensities of vesicular GABA transporter and PV buttons, suggesting disinhibition in the mPFC. These further induced abnormal mPFC neural activities and consequently contributed to cognitive impairments. In addition, gamma oscillations supported by PV interneuron function were positively associated with time spent with the novel object in the novel object recognition test. Notably, down-regulation of neuroinflammation by microglia inhibitor minocycline or boosting gamma oscillations by dopamine 4 receptor agonist RO-10-5824 improved cognitive performance. In conclusion, our study proposes neural network disturbance as a likely mechanistic linker between neuroinflammation and cognitive impairments in neurodegeneration and possibly other psychiatric disorders.


Asunto(s)
Disfunción Cognitiva , Parvalbúminas , Animales , Disfunción Cognitiva/inducido químicamente , Interneuronas/metabolismo , Redes Neurales de la Computación , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo
10.
Cancer Control ; 27(1): 1073274820968900, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33115287

RESUMEN

OBJECTIVE: The aim is to explore the prediction effect of 5 machine learning algorithms on peritoneal metastasis of gastric cancer. METHODS: 1080 patients with postoperative gastric cancer were divided into a training group and test group according to the ratio of 7:3. The model of peritoneal metastasis was established by using 5 machine learning (gbm(Light Gradient Boosting Machine), GradientBoosting, forest, Logistic and DecisionTree). Python pair was used to analyze the machine learning algorithm. Gbm algorithm is used to show the weight proportion of each variable to the result. RESULT: Correlation analysis showed that tumor size and depth of invasion were positively correlated with the recurrence of patients after gastric cancer surgery. The results of the gbm algorithm showed that the top 5 important factors were albumin, platelet count, depth of infiltration, preoperative hemoglobin and weight, respectively. In training group: Among the 5 algorithm models, the accuracy of GradientBoosting and gbm was the highest (0.909); the AUC values of the 5 algorithms are gbm (0.938), GradientBoosting (0.861), forest (0.796), Logistic(0.741) and DecisionTree(0.712) from high to low. In the test group: among the 5 algorithm models, the accuracy of forest, DecisionTree and gbm was the highest (0.907); AUC values ranged from high to low to gbm (0.745), GradientBoosting (0.725), forest (0.696), Logistic (0.680) and DecisionTree (0.657). CONCLUSION: Machine learning can predict the peritoneal metastasis in patients with gastric cancer.


Asunto(s)
Aprendizaje Automático , Recurrencia Local de Neoplasia/epidemiología , Neoplasias Peritoneales/epidemiología , Neoplasias Gástricas/patología , Anciano , Femenino , Gastrectomía , Humanos , Incidencia , Modelos Logísticos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Peritoneales/secundario , Curva ROC , Estudios Retrospectivos , Medición de Riesgo/métodos , Estómago/patología , Estómago/cirugía , Neoplasias Gástricas/cirugía , Resultado del Tratamiento
11.
Neurochem Res ; 44(12): 2832-2842, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31691882

RESUMEN

Sepsis-associated encephalopathy (SAE) is a potentially irreversible acute cognitive dysfunction with unclear mechanism. Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase which normally opposes synaptic strengthening by regulating key signaling molecules involved in synaptic plasticity and neuronal function. Thus, we hypothesized that abnormal STEP signaling pathway was involved in sepsis-induced cognitive impairment evoked by lipopolysaccharides (LPS) injection. The levels of STEP, phosphorylation of GluN2B (pGluN2B), the kinases extracellular signal-regulated kinase 1/2 (pERK), cAMP-response element binding protein (CREB), synaptophysin, brain derived neurotrophic factor (BDNF), and post-synaptic density protein 95 (PSD95) in the hippocampus, prefrontal cortex, and striatum were determined at the indicated time points. In the present study, we found that STEP levels were significantly increased in the hippocampus, prefrontal cortex, and striatum following LPS injection, which might resulted from the disruption of the ubiquitin-proteasome system. Notably, a STEP inhibitor TC-2153 treatment alleviated sepsis-induced memory impairment by increasing phosphorylation of GluN2B and ERK1/2, CREB/BDNF, and PSD95. In summary, our results support the key role of STEP in sepsis-induced memory impairment in a mouse model of SAE, whereas inhibition of STEP may provide a novel therapeutic approach for this disorder and possible other neurodegenerative diseases.


Asunto(s)
Trastornos de la Memoria/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Encefalopatía Asociada a la Sepsis/fisiopatología , Transducción de Señal/fisiología , Animales , Benzotiepinas/farmacología , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Homólogo 4 de la Proteína Discs Large/química , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Trastornos de la Memoria/inducido químicamente , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Encefalopatía Asociada a la Sepsis/inducido químicamente , Transducción de Señal/efectos de los fármacos
12.
Mediators Inflamm ; 2019: 6212934, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31210750

RESUMEN

BACKGROUND: Systemic inflammation impairs cognitive performance, yet the brain networks mediating this process remain to be elucidated. The purpose of the current study was to use resting-state functional magnetic resonance imaging (fMRI) to explore changes in the functional connectivity in a lipopolysaccharide- (LPS-) induced systemic inflammation animal model. MATERIALS AND METHODS: We used the regional homogeneity (ReHo) method to examine abnormal brain regions between the control and LPS groups and then considered them as seeds of functional connectivity analysis. RESULTS: Compared with the control group, our study showed that (1) LPS impaired mood function, as reflected by a depression-like behavior in the forced swim test; (2) LPS induced significantly increased ReHo values in the anterior cingulate cortex (ACC) and caudate putamen (CPu); (3) the ACC seed showed increased functional connectivity with the retrosplenial cortex, superior colliculus, and inferior colliculus; and (4) the right CPu seed showed increased functional connectivity with the left CPu. Linear regression analysis showed a LPS-induced depression-like behavior which was associated with increased ReHo values in the ACC and right CPu. Moreover, the LPS-induced depression-like behavior was related to increased functional connectivity between the right CPu and left CPu. CONCLUSION: This is the first study to show that systemic inflammation impairs mood function that is associated with an altered resting-state functional network based on ReHo analysis, providing evidence of the abnormal regional brain spontaneous activity which might be involved in inflammation-related neurobehavioral abnormalities.


Asunto(s)
Afecto/efectos de los fármacos , Depresión/metabolismo , Inflamación/fisiopatología , Lipopolisacáridos/toxicidad , Animales , Depresión/inducido químicamente , Ensayo de Inmunoadsorción Enzimática , Inflamación/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley
14.
Neurobiol Dis ; 91: 209-220, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27001149

RESUMEN

Human studies, and especially laboratory studies, provide evidence that early life exposure to general anesthesia may affect neurocognitive development via largely unknown mechanisms. We explored whether hippocampal histone acetylation had a role in neurodevelopmental effects of sevoflurane administered to neonatal rats. Male Sprague-Dawley rats were exposed to 3% sevoflurane or were subjected to maternal separation only for 2h daily at postnatal days 6, 7, and 8. The histone deacetylase inhibitor, sodium butyrate (250mg/kg, intraperitoneally), or saline was administered starting 2h prior to anesthesia or maternal separation and continued daily until the end of behavioral tests, which were performed between postnatal days 33 and 50. Upon completion of the behavioral tests, the brain tissues were harvested for further analysis. Rats neonatally exposed to sevoflurane exhibited decreased freezing time in the fear conditioning contextual test and increased escape latency, decreased time in target quadrant, and number of platform crossings in the Morris water maze test. The sevoflurane-exposed rats had lower hippocampal density of dendritic spines, reduced levels of the brain-derived neurotrophic factor, c-fos protein, microtubule-associated protein 2, synapsin1, postsynaptic density protein 95, pCREB/CREB, CREB binding protein, and acetylated histones H3 and H4, and increased levels of histone deacetylases 3 and 8. These neurobehavioral abnormalities were normalized in the sevoflurane-exposed rats treated with sodium butyrate. Our findings provide evidence that neonatal exposure to sevoflurane induces neurobehavioral abnormalities and long-lasting alterations in histone acetylation; normalization of histone acetylation may alleviate the neurodevelopmental side effects of the anesthetic.


Asunto(s)
Hipocampo/efectos de los fármacos , Histonas/metabolismo , Éteres Metílicos/farmacología , Acetilación/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Privación Materna , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Sevoflurano , Tiempo
15.
Brain Behav Immun ; 51: 109-118, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26254234

RESUMEN

Microglial activation plays a key role in the development of postoperative cognitive dysfunction (POCD). Nox2, one of the main isoforms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the central nervous system, is a predominant source of reactive oxygen species (ROS) overproduction in phagocytes including microglia. We therefore hypothesized that Nox2-induced microglial activation is involved in the development of POCD. Sixteen-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. Behavioral tests were performed at 6 and 7 d post-surgery with open field and fear conditioning tests, respectively. The levels of Nox2, 8-hydroxy-2'-deoxyguanosine (8-OH-dG, a marker of DNA oxidation), CD11b (a marker of microglial activation), interleukin-1ß (IL-1ß), and brain-derived neurotrophic factor (BDNF) were determined in the hippocampus and prefrontal cortex at 1 d and 7 d post-surgery, respectively. For the interventional study, mice were treated with a NADPH oxidase inhibitor apocynin (APO). Our results showed that exploratory laparotomy with isoflurane anesthesia impaired the contextual fear memory, increased expression of Nox2, 8-OH-dG, CD11b, and IL-1ß, and down-regulated BDNF expression in the hippocampus at 7 d post-surgery. The surgery-induced microglial activation and neuroinflammation persisted to 7 d after surgery in the hippocampus, but only at 1 d in the prefrontal cortex. Notably, administration with APO could rescue these surgery-induced cognitive impairments and associated brain pathology. Together, our data suggested that Nox2-derived ROS in hippocampal microglia, at least in part, contributes to subsequent neuroinflammation and cognitive impairments induced by surgery in aged mice.


Asunto(s)
Hipocampo/enzimología , Glicoproteínas de Membrana/metabolismo , Trastornos de la Memoria/enzimología , Microglía/enzimología , NADPH Oxidasas/metabolismo , Complicaciones Posoperatorias/enzimología , Complicaciones Posoperatorias/psicología , Especies Reactivas de Oxígeno/metabolismo , Acetofenonas/administración & dosificación , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Encefalitis/complicaciones , Encefalitis/enzimología , Inhibidores Enzimáticos/administración & dosificación , Miedo/efectos de los fármacos , Miedo/fisiología , Hipocampo/efectos de los fármacos , Laparotomía , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/enzimología
16.
J Neuroinflammation ; 12: 182, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26416717

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by many pathological events, including neuroinflammation and oxidative stress damage. Increasing evidence suggests that parvalbumin (PV) interneurons play a key role in the cognitive process, whereas the dysfunction of these interneurons has been implicated in a number of major psychiatric disorders. Here, we aimed to investigate whether enhanced inflammation and oxidative stress-mediated PV interneuron phenotype loss plays a role in sepsis-induced cognitive impairments. METHODS: Male C57BL/6 mice were subjected to cecal ligation and puncture or sham operation. For the interventional study, the animals were chronically treated with a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin, at 5 mg/kg. The mice were euthanized at the indicated time points, and the brain tissues were harvested for determination of the PV, membrane subunit of NADPH oxidase gp91(phox), and markers of oxidative stress (4-hydroxynonenal and malondialdehyde) and inflammation (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-6, and IL-10). A separate cohort of animals was used to evaluate the behavioral alterations by the open field and fear conditioning tests. Primary hippocampal neuronal cultures were used to investigate the mechanisms underlying the dysfunction of PV interneurons. RESULTS: Sepsis resulted in cognitive impairments, which was accompanied by selective phenotype loss of PV interneurons and increased gp91(phox), 4-hydroxynonenal, malondialdehyde, IL-1ß, and IL-6 expressions. Notably, these abnormalities could be rescued by apocynin treatment. CONCLUSION: Selective phenotype loss of PV interneurons, as a result of NADPH oxidase 2 (Nox2) activation, might partly contribute to cognitive impairments in a mouse model of SAE.


Asunto(s)
Trastornos del Conocimiento/etiología , Interneuronas/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Parvalbúminas/metabolismo , Sepsis/complicaciones , Sepsis/patología , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Células Cultivadas , Condicionamiento Psicológico/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Miedo/psicología , Hipocampo/citología , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sepsis/tratamiento farmacológico , Superóxido Dismutasa/metabolismo
17.
J Anesth ; 29(4): 600-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25533726

RESUMEN

PURPOSE: Post-traumatic stress disorder (PTSD) is a psychiatric disease that may occur after intense psychological trauma or physiological stress. Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) and the serine/threonine kinase (Akt)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway are critically involved in brain plasticity, including hippocampal-dependent learning and memory, while sevoflurane impairs memory processing. Thus, we hypothesized that sevoflurane can suppress fear learning by regulating the expression of BDNF and the Akt/GSK-3ß signaling pathway in a rat model of PTSD. METHOD: Rats were exposed to sevoflurane during or after a 15 foot-shock stressor. Thereafter, rats were subjected to a single foot-shock in a totally different environment. The fear response was recorded in response to the 15 foot-shock and the single foot-shock environments. In another set of experiments, the brain tissue was harvested and subjected to biochemistry studies. RESULTS: Our data suggested that increasing sevoflurane concentrations decreased stress-enhanced fear learning (SEFL) when given during but not after the stressor. Furthermore, administration of lithium chloride (100 mg/kg, intraperitoneally) 30 min before the contextual fear conditioning reversed the inhibitory effect of 0.8 % sevoflurane on SEFL as well as phosphorylated (p)-Akt, p-GSK-3ß and BDNF expressions. CONCLUSION: Our data suggested that increasing sevoflurane administration during but not after the stressor can impair SEFL in a rat model of PTSD, which may be due, at least in part, to the regulation of hippocampal BDNF expression and the Akt/GSK-3ß signaling pathway.


Asunto(s)
Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Éteres Metílicos/farmacología , Trastornos por Estrés Postraumático/tratamiento farmacológico , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sevoflurano , Transducción de Señal/efectos de los fármacos
18.
Anesthesiology ; 121(1): 79-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24589481

RESUMEN

BACKGROUND: A prolonged isoflurane exposure may lead to cognitive decline in rodents. Neuregulin 1 (NRG1)-ErbB4 signaling plays a key role in the modulation of hippocampal synaptic plasticity through regulating the neurotransmission. The authors hypothesized that hippocampal NRG1-ErbB4 signaling is involved in isoflurane-induced cognitive impairments in aged mice. METHODS: Fourteen-month-old C57BL/6 mice were randomized to receive 100% O2 exposure, vehicle injection after 100% O2 exposure, vehicle injection after exposure to isoflurane carried by 100% O2, NRG1-ß1 injection after exposure to isoflurane carried by 100% O2, and NRG1-ß1 and an ErbB4 inhibitor AG1478 injection after exposure to isoflurane carried by 100% O2. Fear conditioning test was used to assess the cognitive function of mice 48-h postexposure. The brain tissues were harvested 48-h postexposure to determine the levels of NRG1, ErbB4, p-ErbB4, parvalbumin, and glutamic acid decarboxylase 67 in the hippocampus using Western blotting, enzyme-linked immunosorbent assay, and immunofluorescence. RESULTS: The percentage of freezing time to context was decreased from 50.28 ± 11.53% to 30.82 ± 10.00%, and the hippocampal levels of NRG1, p-ErbB4/ErbB4, parvalbumin, and glutamic acid decarboxylase 67 were decreased from 172.79 ± 20.85 ng/g, 69.15 ± 12.20%, 101.68 ± 11.21%, and 104.71 ± 6.85% to 112.92 ± 16.65 ng/g, 42.26 ± 9.71%, 75.89 ± 10.26%, and 73.87 ± 16.89%, respectively, after isoflurane exposure. NRG1-ß1 attenuated the isoflurane-induced hippocampus-dependent cognitive impairment and the declines in the hippocampal NRG1, p-ErbB4/ErbB4, parvalbumin, and glutamic acid decarboxylase 67. AG1478 inhibited the rescuing effects of NRG1-ß1. CONCLUSION: Disruption of NRG1-ErbB4 signaling in the parvalbumin-positive interneurons might, at least partially, contribute to the isoflurane-induced hippocampus-dependent cognitive impairment after exposure to isoflurane carried by 100% O2 in aged mice.


Asunto(s)
Anestésicos por Inhalación/farmacología , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/fisiopatología , Receptores ErbB/efectos de los fármacos , Hipocampo/fisiopatología , Isoflurano/farmacología , Neurregulina-1/efectos de los fármacos , Envejecimiento/fisiología , Animales , Western Blotting , Regulación hacia Abajo/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Conducta Exploratoria/efectos de los fármacos , Miedo/psicología , Técnica del Anticuerpo Fluorescente , Glutamato Descarboxilasa/biosíntesis , Inyecciones Intraventriculares , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Parvalbúminas/biosíntesis , Parvalbúminas/metabolismo , Receptor ErbB-4 , Transducción de Señal/efectos de los fármacos
19.
J Surg Res ; 192(2): 564-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24969549

RESUMEN

BACKGROUND: Hydrogen, a popular antioxidant gas, can selectively reduce cytotoxic oxygen radicals and has been found to protect against ischemia-reperfusion (I/R) injury of multiple organs. Acute neuronal death during I/R has been attributed to loss of mitochondrial permeability transition coupled with mitochondrial dysfunction. This study was designed to investigate the potential therapeutic effect of hydrogen-rich saline on neuronal mitochondrial injury from global cerebral I/R in rats. MATERIALS AND METHODS: We used a four-vessel occlusion model of global cerebral ischemia and reperfusion, with Sprague-Dawley rats. The rats were divided randomly into six groups (n = 90): sham (group S), I/R (group I/R), normal saline (group NS), atractyloside (group A), hydrogen-rich saline (group H), and hydrogen-rich saline + atractyloside (group HA). In groups H and HA, intraperitoneal hydrogen-rich saline (5 mL/kg) was injected immediately after reperfusion, whereas the equal volume of NS was injected in the other four groups. In groups A and HA, atractyloside (15 µL) was intracerebroventricularly injected 10 min before reperfusion, whereas groups NS and H received equal NS. The mitochondrial permeability transition pore opening and mitochondrial membrane potential were measured by spectrophotometry. Cytochrome c protein expression in the mitochondria and cytoplasm was detected by western blot. The hippocampus mitochondria ultrastructure was examined with transmission electron microscope. The histologic damage in hippocampus was assessed by hematoxylin and eosin staining. RESULTS: Hydrogen-rich saline treatment significantly improved the amount of surviving cells (P < 0.05). Furthermore, hydrogen-rich saline not only reduced tissue damage, the degree of mitochondrial swelling, and the loss of mitochondrial membrane potential but also preserved the mitochondrial cytochrome c content (P < 0.05). CONCLUSIONS: Our study showed that hydrogen-rich saline was able to attenuate neuronal I/R injury, probably by protecting mitochondrial function in rats.


Asunto(s)
Antioxidantes/farmacología , Isquemia Encefálica/tratamiento farmacológico , Hidrógeno/farmacología , Daño por Reperfusión/tratamiento farmacológico , Cloruro de Sodio/farmacología , Animales , Apoptosis/efectos de los fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Infusiones Intraventriculares , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
20.
J Affect Disord ; 362: 341-355, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821372

RESUMEN

BACKGROUND: Accumulative evidence suggested that the oxytocin system plays a role in socio-emotional disorders, although its role in neuroinflammation-induced anxiety remains unclear. METHOD: In the present study, anxiety-like behavior was induced in cohorts of animals through repeated lipopolysaccharide (LPS, 0.5 mg/kg, daily, Escherichia coli O55:B5) i.p. injections for seven consecutive days. These different cohorts were subsequently used for anxiety-like behavior assessment with open field test, elevated plus maze, and novelty-suppressed feeding test or for electrophysiology (EEG) recordings of miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs), or local field potential (LFP) in vivo or ex vivo settings. Samples of the anterior cingulate cortex (ACC) from some cohorts were harvested to conduct immunostaining or western blotting analysis of oxytocin, oxytocin receptor, CamkII, GABA, vGAT, vGLUT2, and c-fos. The dendritic spine density was assessed by Golgi-Cox staining. RESULTS: Repeated LPS injections induced anxiety-like behavior with concurrent decreases of oxytocin, vGLUT2, mEPSC, dendritic spine, c-fos, membrane excitability, and EEG beta and gamma oscillations, but increased oxytocin receptor and vGAT expressions in the ACC; all these changes were ameliorated by oxytocin intranasal or local brain (via cannula) administration. CONCLUSION: Taken together, our data suggested that oxytocin system may be a therapeutic target for developing treatment to tackle neuroinflammation-induced anxiety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA