Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581001

RESUMEN

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Asunto(s)
Inmunidad , Neoplasias , Humanos , Inmunoterapia , Inmunomodulación , Neoplasias/terapia
2.
Mol Carcinog ; 63(2): 195-208, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37846815

RESUMEN

N-myc and STAT interactor (NMI) has been reported to interact with several transcription factors, including STATs family, c-Myc, N-Myc, and BRCA1, to indirectly affect transcription events and participate in multiple cellular processes. However, its function in pancreatic ductal adenocarcinoma (PDAC) has seldom been studied. In this study, we investigated the regulation of NMI on PDAC progression and uncovered the underlying molecular mechanisms. We found that NMI expression was significantly upregulated in PDAC and high NMI expression was related to a worse patient survival. Cell proliferation and migration assay, including cell viability, transwell assay, wound healing, and subcutaneous mouse model were utilized to confirm the function of NMI in PDAC progression. Downregulation of NMI abrogates tumor progression of PDAC both in vitro and in vivo. RNA sequencing was utilized to identify the downstream molecules of NMI and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) was confirmed to be regulated by NMI in both mRNA and protein level. The binding function of NMI to STAT3 was essential in regulating the IFIT3 expression. Moreover, the NMI/STAT3-IFIT3 axis was identified to markedly facilitate the gemcitabine resistance in PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Gemcitabina , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Acta Pharmacol Sin ; 45(4): 844-856, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38057506

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy prone to recurrence and metastasis. Studies show that tumor cells with increased invasive and metastatic potential are more likely to undergo ferroptosis. SMAD4 is a critical molecule in the transforming growth factor ß (TGF-ß) pathway, which affects the TGF-ß-induced epithelial-mesenchymal transition (EMT) status. SMAD4 loss is observed in more than half of patients with PDAC. In this study, we investigated whether SMAD4-positive PDAC cells were prone to ferroptosis because of their high invasiveness. We showed that SMAD4 status almost determined the orientation of transforming growth factor ß1 (TGF-ß1)-induced EMT via the SMAD4-dependent canonical pathway in PDAC, which altered ferroptosis vulnerability. We identified glutathione peroxidase 4 (GPX4), which inhibited ferroptosis, as a SMAD4 down-regulated gene by RNA sequencing. We found that SMAD4 bound to the promoter of GPX4 and decreased GPX4 transcription in PDAC. Furthermore, TGF-ß1-induced high invasiveness enhanced sensitivity of SMAD4-positive organoids and pancreas xenograft models to the ferroptosis inducer RAS-selective lethal 3 (RSL3). Moreover, SMAD4 enhanced the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive PDAC cells. This study provides new ideas for the treatment of PDAC, especially SMAD4-positive PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Neoplasias Pancreáticas , Proteína Smad4 , Factor de Crecimiento Transformador beta1 , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
4.
Surg Endosc ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750173

RESUMEN

BACKGROUND: Laparoscopic radical pancreatectomy is safe and beneficial for recectable pancreatic cancer, but the extent of resection for early-stage tumors remains controversial. METHODS: Consecutive patients with left-sided pancreatic cancer who underwent either laparoscopic radical antegrade modular pancreatosplenectomy (LRAMPS, n = 54) or laparoscopic distal pancreatosplecnectomy (LDP, n = 131) between October 2020 and December 2022 were reviewed. The preoperative radiological selection criteria were as follows: (1) tumor diameter ≤ 4 cm; (2) located ≥ 1 cm from the celiac trunk; (3) didn't invade the fascial layer behind the pancreas. RESULTS: After 1:1 propensity score matching (LRAMPS, n = 54; LDP, n = 54), baseline data were well-balanced with no differences. LRAMPS resulted in longer operation time (240.5 vs. 219.0 min, P = 0.020) and higher intraoperative bleeding volume (200 vs. 150 mL, P = 0.001) compared to LDP. Although LRAMPS harvested more lymph nodes (16 vs. 13, P = 0.008), there were no statistically significant differences in lymph node positivity rate (35.2% vs. 33.3%), R0 pancreatic transection margin (94.4% vs. 96.3%), and retroperitoneal margin (83.3% vs. 87.0%) rate. Postoperative complications did not significantly differ between the two groups. However, LRAMPS was associated with increased drainage volume (85.0 vs. 40.0 mL, P = 0.001), longer time to recover semi-liquid diet compared to LDP (5 vs. 4 days, P < 0.001) and increased daily bowel movement frequency. Tumor recurrence pattern and recurrence-free survival were comparable between the two groups, but the adjuvant chemotherapy regimens varied, and the completion rate of the 6-month intravenous chemotherapy was lower in the LRAMPS group compared to the LDP group (51.9% vs. 75.9%, P = 0.016). CONCLUSIONS: LRAMPS did not provide oncological benefits over LDP for left-sided pancreatic cancer within the selection criteria, but it increased operation time, intraoperative bleeding, and postoperative bowel movement frequency. These factors impacted the regimen selection and completion of adjuvant chemotherapy, consequently compromising the potential benefits of LRAMPS in achieving better local control.

5.
World J Surg Oncol ; 22(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169384

RESUMEN

BACKGROUND: There is no evidence supporting the feasibility of laparoscopic pancreaticoduodenectomy (LPD) compared to open pancreatoduodenectomy (OPD) following neoadjuvant chemotherapy (NACT) for pancreatic ductal adenocarcinoma (PDAC). METHODS: The clinical data of consecutive patients with borderline resectable PDAC who received NACT and underwent either LPD or OPD between January 2020 and December 2022 at Fudan University Shanghai Cancer Center was prospectively collected and retrospectively analyzed. RESULTS: The analysis included 57 patients in the OPD group and 20 in the LPD group. Following NACT, the LPD group exhibited a higher median CA19-9 decrease rate compared to the OPD group (85.3% vs. 66.9%, P = 0.042). Furthermore, 3 anatomically borderline PDACs in the LPD group and 5 in the OPD group were downstaged into resectable status (30.0% vs. 12.3%, P = 0.069). According to RECIST criteria, 51 (66.2%) patients in the entire cohort were evaluated as having stable disease. The median operation time for the LPD group was longer than the OPD group (419 vs. 325 min, P < 0.001), while the venous resection rate was 35.0% vs. 43.9%, respectively (P = 0.489). There was no difference in the number of retrieved lymph nodes, with a median number of 18.5 in the LPD group and 22 in the OPD group, and the R1 margin rate (15.0% vs. 12.3%) was also comparable. The incidence of Clavien-Dindo complications (35.0% vs. 66.7%, P = 0.018) was lower in the LPD group compared to the OPD group. Multivariable regression analysis revealed that a tumor diameter > 3 cm before NACT (HR 2.185) and poor tumor differentiation (HR 1.805) were independent risk factors for recurrence-free survival, and a decrease rate of CA19-9 > 70% (OR 0.309) was a protective factor for early tumor recurrence and overall survival. CONCLUSIONS: LPD for PDAC following NACT is feasible and oncologically equivalent to OPD. Effective control of CA19-9 levels is beneficial in reducing early tumor recurrence and improving overall survival.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Laparoscopía , Neoplasias Pancreáticas , Humanos , Pancreaticoduodenectomía/efectos adversos , Estudios Retrospectivos , Terapia Neoadyuvante/efectos adversos , Recurrencia Local de Neoplasia/etiología , Estudios de Factibilidad , Antígeno CA-19-9 , China , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/cirugía , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/cirugía , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/cirugía , Laparoscopía/efectos adversos , Complicaciones Posoperatorias/etiología , Tiempo de Internación
6.
Ann Surg Oncol ; 30(5): 2988-2998, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36310316

RESUMEN

PURPOSE: This study was designed to assess the computed tomography maximum (CTmax) value on pretherapeutic arterial phase computed tomography (APCT) images to predict pancreatic neuroendocrine tumours (pNETs) recurrence and clarify its role in predicting the outcome of tumour therapy. METHODS: This retrospective study enrolled 250 surgical patients and 24 nonsurgical patients with sunitinib-based treatment in our hospital from 2008 to 2019. CT images were assessed, the maximum value was defined as "CTmax," and recurrence-free survival (RFS) or progression-free survival (PFS) was compared between a high-CTmax group and a low-CTmax group among patients who underwent surgical resection or nonsurgical, sunitinib-based treatment according to the CTmax cutoff value. RESULTS: In ROC curve analysis, a CTmax of 108 Hounsfield units, as the cutoff value, achieved an AUC of 0.796 in predicting recurrence. Compared with the low-CTmax group, the high-CTmax group had a longer RFS (p < 0.001). Low CTmax was identified as an independent factor for RFS (p < 0.001) in multivariate analysis; these results were confirmed using the internal validation set. The CTmax value was significantly correlated with the microvascular density (MVD) value (p < 0.001) and the vascular endothelial growth factor receptor 2 (VEGFR2) score (p < 0.001). Furthermore, the high-CTmax group had a better PFS than the low-CTmax group among the sunitinib treatment group (p = 0.007). CONCLUSIONS: The tumour CTmax on APCT might be a potential and independent indicator for predicting recurrence in patients who have undergone surgical resection and assessing the efficacy of sunitinib for patients with advanced metastatic pNETs.


Asunto(s)
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Sunitinib/uso terapéutico , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/cirugía , Estudios Retrospectivos , Factor A de Crecimiento Endotelial Vascular , Resultado del Tratamiento , Pronóstico , Tomografía Computarizada por Rayos X , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Tumores Neuroectodérmicos Primitivos/inducido químicamente , Tumores Neuroectodérmicos Primitivos/tratamiento farmacológico
7.
Cancer Cell Int ; 23(1): 50, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934248

RESUMEN

BACKGROUND: As an oncogene, SETD8 can promote tumour growth and tumour cell proliferation. This study aims to reveal the relationship between SETD8 and ferroptosis in pancreatic cancer and its role in pancreatic cancer to provide a possible new direction for the comprehensive treatment of pancreatic cancer. METHODS: The downstream targets were screened by RNA sequencing analysis. Western blot, Real-time Quantitative PCR (qPCR) and immunohistochemistry showed the relationship between genes. Cell proliferation analysis and cell metabolite analysis revealed the function of genes. Chromatin immunoprecipitation (CHIP) assays were used to study the molecular mechanism. RESULTS: The potential downstream target of SETD8, RRAD, was screened by RNA sequencing analysis. A negative correlation between SETD8 and RRAD was found by protein imprinting, Real-time Quantitative PCR (qPCR) and immunohistochemistry. Through cell proliferation analysis and cell metabolite analysis, it was found that RRAD can not only inhibit the proliferation of cancer cells but also improve the level of lipid peroxidation of cancer cells. At the same time, chromatin immunoprecipitation analysis (CHIP) was used to explore the molecular mechanism by which SETD8 regulates RRAD expression. SETD8 inhibited RRAD expression. CONCLUSIONS: SETD8 interacts with the promoter region of RRAD, which epigenetically silences the expression of RRAD to reduce the level of lipid peroxidation in pancreatic cancer cells, thereby inhibiting ferroptosis in pancreatic cancer cells and resulting in poor prognosis of pancreatic cancer.

8.
Acta Pharmacol Sin ; 44(4): 865-876, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36284209

RESUMEN

Hernandezine (Her) is a bisbenzylisoquinoline alkaloid extracted from the traditional Chinese herbal medicine Thalictrum glandulosissimum. Evidence shows that Her is a natural agonist of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and induces apoptosis and autophagy in tumor cells. In this study, we investigated the role of autophagy in Her-induced cell death in human pancreatic cancer cell lines. We showed that Her dose-dependently suppressed cell proliferation, promoted autophagy and induced autophagic death in pancreatic ductal adenocarcinoma (PDAC) cell lines Capan-1 and SW1990. The IC50 values of Her in inhibition of Capan-1 and SW1990 cells were 47.7 µM and 40.1 µM, respectively. Immunoblotting showed that Her (1-40 µM) promoted the conversion of LC3-I to LC3-II, and Her exerted concentration-dependent and time-dependent effects on autophagy activation in PDAC cells. In transmission electron microscopy and fluorescence image analysis, we found that autophagic vacuoles were significantly increased in Her-treated cells. Knockdown of ATG5, a key gene in the autophagy pathway, alleviated the activation of autophagy by Her. These results demonstrated that Her induced autophagy in PDAC cells. Intensely activated autophagy could promote cell death. The autophagy inhibitors, BafA1 and HCQ significantly inhibited Her-induced cell death, implying that Her induced autophagic cell death in PDAC cells. Moreover, we showed that Her activated autophagy by increasing the phosphorylation of AMPK and decreasing the phosphorylation of mTOR/p70S6K. Knockdown of AMPKα relieves the autophagic cell death induced by Her. Furthermore, Her concentration-dependently enhanced reactive oxygen species (ROS) generation in PDAC cells. Antioxidants could reduce the phosphorylation of AMPK and suppress autophagic cell death induced by Her. Our study provides evidence for the development of Her as a therapeutic agent for the treatment of pancreatic cancer.


Asunto(s)
Muerte Celular Autofágica , Bencilisoquinolinas , Neoplasias Pancreáticas , Femenino , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Muerte Celular Autofágica/efectos de los fármacos , Autofagia , Bencilisoquinolinas/farmacología , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
9.
Acta Pharmacol Sin ; 44(8): 1536-1548, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37012494

RESUMEN

Autophagy-lysosome system plays a variety of roles in human cancers. In addition to being implicated in metabolism, it is also involved in tumor immunity, remodeling the tumor microenvironment, vascular proliferation, and promoting tumor progression and metastasis. Transcriptional factor EB (TFEB) is a major regulator of the autophagy-lysosomal system. With the in-depth studies on TFEB, researchers have found that it promotes various cancer phenotypes by regulating the autophagolysosomal system, and even in an autophagy-independent way. In this review, we summarize the recent findings about TFEB in various types of cancer (melanoma, pancreatic ductal adenocarcinoma, renal cell carcinoma, colorectal cancer, breast cancer, prostate cancer, ovarian cancer and lung cancer), and shed some light on the mechanisms by which it may serve as a potential target for cancer treatment.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Masculino , Humanos , Autofagia , Microambiente Tumoral
10.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1599-1609, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36604142

RESUMEN

Pancreatic neuroendocrine tumor (pNET) is the second most common malignant tumors of the pancreas. Multiple endocrine neoplasia 1 ( MEN1) is the most frequently mutated gene in pNETs and MEN1-encoded protein, menin, is a scaffold protein that interacts with transcription factors and chromatin-modifying proteins to regulate various signaling pathways. However, the role of MEN1 in lipid metabolism has not been studied in pNETs. In this study, we perform targeted metabolomics analysis and find that MEN1 promotes the generation and oxidation of polyunsaturated fat acids (PUFAs). Meanwhile lipid peroxidation is a hallmark of ferroptosis, and we confirm that MEN1 promotes ferroptosis by inhibiting the activation of mTOR signaling which is the central hub of metabolism. We show that stearoyl-coA desaturase (SCD1) is the downstream of MEN1-mTOR signaling and oleic acid (OA), a metabolite of SCD1, recues the lipid peroxidation caused by MEN1 overexpression. The negative correlation between MEN1 and SCD1 is further verified in clinical specimens. Furthermore, we find that BON-1 and QGP-1 cells with MEN1 overexpression are more sensitive to everolimus, a widely used drug in pNETs that targets mTOR signaling. In addition, combined use everolimus with ferroptosis inducer, RSL3, possesses a more powerful ability to kill cells, which may provide a new strategy for the comprehensive therapy of pNETs.


Asunto(s)
Ferroptosis , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas , Humanos , Everolimus , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Estearoil-CoA Desaturasa/genética , Serina-Treonina Quinasas TOR , Factores de Transcripción , Proteínas Proto-Oncogénicas/genética
11.
BMC Surg ; 22(1): 160, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538535

RESUMEN

BACKGROUND: Although some factors that predict the prognosis in pancreatic neuroendocrine tumor (pNET) have been confirmed, the predictive value of lymph node metastasis (LNM) in the prognosis of pNETs remains conflicting and it is not clear whether regional lymphadenectomy should be performed in all grades of tumors. METHODS: We included pNET patients undergoing surgery in Shanghai pancreatic cancer institute (SHPCI). The risk factors for survival were investigated by the Kaplan-Meier method and Cox regression model. We evaluated the predictors of LNM using Logistic regression. RESULTS: For 206 patients in the SHPCI series, LNM was an independent prognostic factor for entire cohort suggested by multivariate Cox regression analysis. LNM (P = 0.002) predicted poorer overall survival (OS) in grade 2/3 cohort, but there is no significant association between LNM and OS in grade 1 cohort. Grade (P < 0.001) and size (P = 0.049) predicted LNM in entire cohort. Grade (P = 0.002) predicted LNM while regardless of size in grade 2/3 cohort. CONCLUSIONS: Based on our own retrospective data obtained from a single center series, LNM seems to be associated with poorer outcome for patients with grade 2/3 and/or grade 1 > 4 cm tumors. On the other way, LNM was seems to be not associated with prognosis in patients with grade 1 tumors less than 4 cm. Moreover, tumor grade and tumor size seem to act as independent predictors of LNM. Thus, regional lymphadenectomy should be performed in grade 2/3 patients but was not mandatory in grade 1 tumors < 4 cm. It is reasonable to perform functional sparing surgery for grade 1 patients or propose a clinical-radiological monitoring.


Asunto(s)
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , China/epidemiología , Humanos , Escisión del Ganglio Linfático , Ganglios Linfáticos/patología , Metástasis Linfática , Tumores Neuroectodérmicos Primitivos/cirugía , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/cirugía , Neoplasias Pancreáticas/patología , Pronóstico , Estudios Retrospectivos , Neoplasias Pancreáticas
12.
Cancer Cell Int ; 21(1): 514, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565365

RESUMEN

BACKGROUND: ALDOA is a glycolytic enzyme found mainly in developing embryos, adult muscle and various malignant tumours, including pancreatic tumours. Our previous study revealed that ALDOA, an oncogene, can promote the proliferation and metastasis of pancreatic tumours. Furthermore, ALDOA could predict poor prognosis in patients with pancreatic tumours. METHODS: IHC analysis of PDAC tissues was conducted. Western blotting, PCR, cellular IF experiments and cell cycle assessment were conducted utilizing cell lines. GSEA and KEGG pathway analysis were used to identify potential downstream pathways. RESULTS: To explore the effects of ALDOA on the occurrence and development of pancreatic tumours, we analysed the RNA sequencing results and found that ALDOA could inhibit the DDR. Under normal circumstances, when DNA is damaged, initiation of the DDR causes cell cycle arrest, DNA repair or cell apoptosis. Further experiments showed that ALDOA could inhibit DNA repair and reverse cell cycle arrest induced by DNA damage so that DNA damage persisted to promote the occurrence and progression of cancer. CONCLUSIONS: Regarding the molecular mechanism, we found that ALDOA inhibited the DDR and improved activation of the cell cycle checkpoint PLK1 by suppressing ATM, which promotes tumour cell progression. Consequently, ALDOA has a profound effect on pancreatic cancer development.

13.
Acta Pharmacol Sin ; 42(11): 1725-1741, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574569

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Terapia Molecular Dirigida/métodos , Mutación/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Biomarcadores de Tumor/genética , Ensayos Clínicos como Asunto/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Terapia Molecular Dirigida/tendencias , Oncogenes/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Smad4/genética , Proteína p53 Supresora de Tumor/genética
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 997-1008, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34117747

RESUMEN

Fibroblast growth factor-binding protein 1 (FGFBP1) promotes fibroblast growth factor (FGF) activity by releasing FGFs from extracellular matrix storage. We previously reported that the tumor suppressor F-box and WD repeat domain-containing 7 suppresses FGFBP1 by reducing expression of c-Myc, which inhibits the proliferation and migration of pancreatic cancer cells. However, the potential mechanism by which FGFBP1 facilitates pancreatic ductal adenocarcinoma (PDAC) remains unexplored. In this study, we focused on the function of FGFBP1 in the interplay between cancer-associated fibroblasts (CAFs) and pancreatic cancer cells (PCCs). Decreased FGF22 expression was detected in CAFs co-cultured with PCCs with FGFBP1 abrogation, which was verified in the cell culture medium by enzyme-linked immunosorbent assay. Active cytokine FGF22 significantly facilitated the migration and invasion of PANC-1 and Mia PaCa-2 cells. The number of penetrating PCCs cocultured with CAFs with FGF22 abrogation was significantly less than that of the control group. Interestingly, higher expressions of FGF22 and fibroblast growth factor receptor 2 (FGFR2) were associated with worse prognosis of patients with PDAC and FGFR2, an independent prognostic marker of PDAC. The PANC-1 and Mia PaCa-2 cells with silenced FGFR2 showed weaker invasion and metastasis, even if these cells were simultaneously treated with cytokine FGF22. These results revealed that FGFBP1-mediated interaction between CAFs and PCCs via FGF22/FGFR2 facilitates the migration and invasion of PCCs. FGFR2 could act as a prognostic marker for patients with PDAC.


Asunto(s)
Comunicación Celular , Factores de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Línea Celular Tumoral , Factores de Crecimiento de Fibroblastos/genética , Fibroblastos/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
15.
Acta Biochim Biophys Sin (Shanghai) ; 53(12): 1614-1624, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34599596

RESUMEN

Pancreatic cancer (PC) is one of the most deadly diseases, and its incidence is increasing year by year. The methyltransferase SETD8 has been demonstrated to play an important role in tumor cell proliferation and metastasis. However, little is known about whether SETD8 could affect the invasion and metastasis of PC and the mechanism underlying the regulation. Based on our previous report, here, we further found that SETD8 could promote the invasion and migration of PC cells by inducing the expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 was predominantly upregulated in PC tissues and was correlated with lymph node metastasis and worse prognosis. Mechanistically, SETD8 mediated ROR1 activity and regulated PC cells invasion and migration, although promoting the expression of stemness and epithelial-mesenchymal transition-related molecules. This promotion effect disappeared when the catalytically inactive mutant SETD8 was overexpressed, which could be counteracted by the SETD8-specific methyltransferase inhibitor UNC0379. Collectively, our results demonstrate that SETD8 may be a novel prognostic factor and a therapeutic target of PC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Transición Epitelial-Mesenquimal/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Células Madre/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Análisis de Supervivencia , Regulación hacia Arriba/genética
16.
Gut ; 69(5): 888-900, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31611300

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive type of GI tumour, and it possesses deregulated cellular energetics. Although recent advances in PDAC biology have led to the discovery of recurrent genetic mutations in Kras, TP53 and SMAD4, which are related to this disease, clinical application of the molecular phenotype of PDAC remains challenging. DESIGN: We combined molecular imaging technology (positron emission tomography/CT) and immunohistochemistry to evaluate the correlation between the maximum standardised uptake value and SMAD4 expression and examined the effect of SMAD4 on glycolysis through in vitro and in vivo experiments. Furthermore, we identified the effect of SMAD4 on metabolic reprogramming by metabolomics and glucose metabolism gene expression analyses. Dual luciferase reporter assays and chromatin immunoprecipitation were performed to identify whether SMAD4 functioned as a transcription factor for phosphoglycerate kinase 1 (PGK1) in PDAC cells. Proliferative and metastatic assays were performed to examine the effect of PGK1 on the malignant behaviour of PDAC. RESULTS: We provide compelling evidence that the glycolytic enzyme PGK1 is repressed by transforming growth factor-ß/SMAD4. Loss of SMAD4 induces PGK1 upregulation in PDAC, which enhances glycolysis and aggressive tumour behaviour. Notably, in SMAD4-negative PDAC, nuclear PGK1 preferentially drives cell metastasis via mitochondrial oxidative phosphorylation induction, whereas cytoplasmic PGK1 preferentially supports proliferation by functioning as a glycolytic enzyme. The PDAC progression pattern and distinct PGK1 localisation combine to predict overall survival and disease-free survival. CONCLUSION: PGK1 is a decisive oncogene in patients with SMAD4-negative PDAC and can be a target for the development of a therapeutic strategy for SMAD4-negative PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas/genética , Fosfoglicerato Quinasa/genética , Proteína Smad4/genética , Animales , Biopsia con Aguja , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Movimiento Celular , Proliferación Celular/genética , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/genética , Estadificación de Neoplasias , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Fenotipo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico , Medición de Riesgo , Análisis de Supervivencia
17.
Cancer Cell Int ; 19: 49, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867652

RESUMEN

BACKGROUND: Hepatocyte nuclear factor 4α (HNF4α) is a tissue-specific transcription factor that regulates the expression of numerous genes in hepatocytes and pancreatic ß cells. HNF4α has been reported to affect cell proliferation and chemoresistance in several cancers. However, the role of HNF4α in pancreatic adenocarcinoma (PDAC) has not been studied extensively and remains unclear. METHODS: By utilizing immunohistochemical (IHC) staining, we measured the expression of HNF4α in PDAC tissues. By silencing HNF4α in PDAC cell lines, we assessed the impact of HNF4α on pancreatic cancer cell proliferation and gemcitabine sensitivity. We used CCK8 and colony formation assays to examine the effect of HNF4α on cell proliferation. A flow cytometry assay was used to assess cell apoptosis. The expression of gemcitabine-related genes was detected by quantitative real­time PCR (qRT-PCR) and Western blotting. IHC was utilized to assess the correlation between HNF4α and human equilibrative nucleoside transporter 1 (hENT1) expression in PDAC patients. Chromatin immunoprecipitation (ChIP) and dual­luciferase reporter assays were used to confirm that hENT1 is a target gene of HNF4α. RESULTS: Increased HNF4α expression was detected in PDAC tissues; patients with higher HNF4α expression displayed worse prognosis. To elucidate the function of HNF4α, we examined its role in pancreatic cancer cell proliferation, apoptosis and gemcitabine resistance. In HNF4α-silenced Capan-1 and MiaPaCa-2 cells, we observed decreased cell proliferation and increased sensitivity to gemcitabine compared to those of controls. The mechanism of HNF4α in gemcitabine-related chemosensitivity was then explored. In response to HNF4α silencing, the expression levels of gemcitabine-related proteins, hENT1 and deoxycytidine kinase (dCK) were significantly increased. Additionally, hENT1 was negatively correlated with HNF4α in PDAC tissue samples. Moreover, we identified hENT1 as a downstream target of HNF4α. CONCLUSION: HNF4α is a prognostic marker for overall survival, is required for pancreatic cancer cell proliferation and promotes resistance to gemcitabine by downregulating hENT1. Therefore, targeting HNF4α might reverse gemcitabine resistance and provide novel treatment strategies for PDAC.

18.
Pancreatology ; 19(5): 681-685, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31281058

RESUMEN

BACKGROUND: Solid pseudopapillary neoplasm of the pancreas (SPN) is a rare neoplasm, which mainly affects young women. The aim of this study was to investigate the clinicopathological features and surgical management of SPNs in our institution. METHODS: Patients who underwent surgery for a pathologically confirmed SPN in our institution between January 2008 and October 2018 were collected. Their clinical characteristics and survival associations were analyzed. RESULTS: In total, 243 pathologically confirmed patients were analyzed in this study, including 181(74.5%)females and 62(25.5%) males. The mean age was 35.3 years old (range: 12-64 years old) with average tumor size of 4.83 cm (range: 0.8-16 cm). 239 patients underwent complete surgical resection. After median follow-up of 46 months (range: 10-118 months), four patients died due to tumor progression. All the other people were absent of local recurrence or distant metastasis. CONCLUSIONS: SPN is a latent malignant tumor with excellent prognosis. Surgical resection is recommended even in the presence of liver metastasis. If possible, function-preserving surgery is advocated. High Ki67 index may predict the malignant potential and poor prognosis of SPNs.


Asunto(s)
Carcinoma Papilar/cirugía , Neoplasias Pancreáticas/cirugía , Adolescente , Adulto , Carcinoma Papilar/mortalidad , Carcinoma Papilar/patología , Niño , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Pancreatectomía , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pancreaticoduodenectomía , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
19.
Cell Commun Signal ; 17(1): 30, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30922330

RESUMEN

BACKGROUND: The epigenetic factor protein arginine methyltransferase 5 (PRMT5) has been reported to play vital roles in a wide range of cellular processes, such as gene transcription, genomic organization, differentiation and cell cycle control. However, its role in pancreatic cancer remains unclear. Our study aimed to investigate the roles of PRMT5 in pancreatic cancer prognosis and progression and to explore the underlying molecular mechanism. METHODS: Real-time PCR, immunohistochemistry and analysis of a dataset from The Cancer Genome Atlas (TCGA) were performed to study the expression of PRMT5 at the mRNA and protein levels in pancreatic cancer. Cell proliferation assays, including cell viability, colony formation ability and subcutaneous mouse model assays, were utilized to confirm the role of PRMT5 in cell proliferation and tumorigenesis. A Seahorse extracellular flux analyzer, a glucose uptake kit, a lactate level measurement kit and the measurement of 18F-FDG (fluorodeoxyglucose) uptake by PET/CT (positron emission tomography/computed tomography) imaging were used to verify the role of PRMT5 in aerobic glycolysis, which sustains cell proliferation. The regulatory effect of PRMT5 on cMyc, a master regulator of oncogenesis and aerobic glycolysis, was explored by quantitative PCR and protein stability measurements. RESULTS: PRMT5 expression was significantly upregulated in pancreatic cancer tissues compared with that in adjacent normal tissues. Clinically, elevated expression of PRMT5 was positively correlated with worse overall survival in pancreatic cancer patients. Silencing PRMT5 expression inhibited the proliferation of pancreatic cancer cells both in vitro and in vivo. Moreover, PRMT5 regulated aerobic glycolysis in vitro in cell lines, in vivo in pancreatic cancer patients and in a xenograft mouse model used to measure 18F-FDG uptake. We found that mechanistically, PRMT5 posttranslationally regulated cMyc stability via F-box/WD repeat-containing protein 7 (FBW7), an E3 ubiquitin ligase that controls cMyc degradation. Moreover, PRMT5 epigenetically regulated the expression of FBW7 in pancreatic cancer cells. CONCLUSIONS: The present study demonstrated that PRMT5 epigenetically silenced the expression of the tumor suppressor FBW7, leading to increased cMyc levels and the subsequent enhancement of the proliferation of and aerobic glycolysis in pancreatic cancer cells. The PRMT5/FBW7/cMyc axis could be a potential therapeutic target for the treatment of pancreatic cancer.


Asunto(s)
Carcinogénesis/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Epigénesis Genética , Glucólisis , Humanos , Ratones Endogámicos BALB C , Proteína-Arginina N-Metiltransferasas/genética
20.
Cell Mol Life Sci ; 75(6): 1001-1012, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28993833

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies, with approximately 20-30% of PDAC patients receiving the surgical resection with curative intent. Although many studies have focused on finding ideal "drug chaperones" that facilitate and/or potentiate the effects of gemcitabine (GEM) in pancreatic cancer, a significant benefit in overall survival could not be demonstrated for any of these combination therapies in PDAC. Given that pancreatic cancer is characterized by desmoplasia and the dual biological roles of stroma in pancreatic cancer, we reassess the importance of stroma in GEM-based therapeutic approaches in light of current findings. This review is focused on understanding the role of stromal components in the extrinsic resistance to GEM and whether anti-stroma therapies have a positive effect on the GEM delivery. This work contributes to the development of novel and promising combination GEM-based regimens that have achieved significant survival benefits for the patients with pancreatic cancer.


Asunto(s)
Albúminas/uso terapéutico , Anilidas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Piridinas/uso terapéutico , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Ácido Hialurónico/metabolismo , Osteonectina/antagonistas & inhibidores , Osteonectina/genética , Osteonectina/metabolismo , Pancreatectomía , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/patología , Análisis de Supervivencia , Resultado del Tratamiento , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA