Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(5): 1293-1305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38189918

RESUMEN

The rising crime rate associated with document forgery has a significant impact on public safety and social stability. In document fraud cases, determining the origin of a particular stamp-pad ink is the most important objective. In this study, a comprehensive analysis of the volatile compounds in quick-drying stamp-pad inks from six commonly used brands were performed for the first time, utilizing a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and multivariate statistical analysis methods. Visual and comparative analysis of the differential volatile components among different stamp-pad ink samples was conducted using fingerprints and volcano plots. A total of 127 volatile compounds were accurately identified, with ketones, esters, alcohols, and aldehydes being the most abundant compounds in the stamp-pad inks. Hierarchical clustering analysis (HCA), including dendrograms and clustering heatmaps, was utilized to explore the correlations between these compounds and the samples. Additionally, the precise identification of positional isomers and functional group isomers of aliphatic compounds was achieved. To achieve accurate discrimination of various stamp-pad ink samples, a multivariate statistical analysis method was utilized to establish a classification model for them. Based on the results obtained from HS-GC-IMS, effective discrimination among different brands of stamp-pad ink samples was achieved through principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The model exhibited excellent performance, with the fit index of dependent variables (R2Y) and the predictive index of the model (Q2) values of 0.99 and 0.984, respectively. These results provided significant theoretical evidence for the application of HS-GC-IMS as an efficient technique in the analysis of volatile compounds, identification of positional isomers and functional group isomers, as well as tracing the origin of stamp-pad ink and analyzing the formation time of documents.

2.
Food Chem X ; 22: 101265, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38468636

RESUMEN

Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin (OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These findings offer insights for authenticating mare milk products and underscore the influence of processing methods on biomarker levels, stressing the need to consider these effects in milk product authentication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA