Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 32(39)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34126610

RESUMEN

The fine nanopillars on the natural cicada wing, which exhibits outstanding superhydrophobicity and anti-reflectivity, are carefully observed and analyzed. Here, a promising strategy by combining anodic aluminum oxide template and hot embossing is proposed for rapidly and efficiently mimicking the orderly and densely arranged nanopillars on the cicada wing surface to polypropylene (PP) surfaces. By adjusting the compression pressure, the nanostructures on the PP replica surface gradually evolve from nanoprotrusion-like features to nanopillar-like features so that a gradient wetting behavior from hydrophilicity to hydrophobicity and further to superhydrophobicity appears on the PP replica surfaces. Specifically, the biomimetic PP replica surface exhibits a contact angle of 159 ± 3° and a rolling angle of 8 ± 3° at a compression pressure of 15 MPa. Moreover, the biomimetic PP replica surface can stabilize its superhydrophobic state under a 1.96 kPa external pressure during the dynamic droplet impact. Besides robust dynamic superhydrophobicity, the biomimetic PP replica surface also demonstrated excellent anti-reflectivity because of the gradually changed effective refractive index. Therefore, the biomimetic PP replica inherits both the superhydrophobicity and anti-reflectivity of the natural cicada wing, which makes the products can effectively reduce the external damage when applied to agricultural films, dustproof films, and packaging materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA