RESUMEN
Nanoparticle assemblies with interparticle ohmic contacts are crucial for nanodevice fabrication. Despite tremendous progress in DNA-programmable nanoparticle assemblies, seamlessly welding discrete components into welded continuous three-dimensional (3D) configurations remains challenging. Here, we introduce a single-stranded DNA-encoded strategy to customize welded metal nanostructures with tunable morphologies and plasmonic properties. We demonstrate the precise welding of gold nanoparticle assemblies into continuous metal nanostructures with interparticle ohmic contacts through chemical welding in solution. We find that the welded gold nanoparticle assemblies show a consistent morphology with welded efficiency over 90%, such as the rod-like, triangular, and tetrahedral metal nanostructures. Next, we show the versatility of this strategy by welding gold nanoparticle assemblies of varied sizes and shapes. Furthermore, the experiment and simulation show that the welded gold nanoparticle assemblies exhibit defined plasmonic coupling. This single-stranded DNA encoded welding system may provide a new route for accurately building functional plasmonic nanomaterials and devices.
RESUMEN
Two-dimensional (2D) DNA origami assembly represents a powerful approach to the programmable design and construction of advanced 2D materials. Within the context of hybridization-mediated 2D DNA origami assembly, DNA spacers play a pivotal role as essential connectors between sticky-end regions and DNA origami units. Here, we demonstrated that programming the spacer length, which determines the binding radius of DNA origami units, could effectively tune sticky-end hybridization reactions to produce distinct 2D DNA origami arrays. Using DNA-PAINT super-resolution imaging, we unveiled the significant impact of spacer length on the hybridization efficiency of sticky ends for assembling square DNA origami (SDO) units. We also found that the assembly efficiency and pattern diversity of 2D DNA origami assemblies were critically dependent on the spacer length. Remarkably, we realized a near-unity yield of â¼98% for the assembly of SDO trimers and tetramers via this spacer-programmed strategy. At last, we revealed that spacer lengths and thermodynamic fluctuations of SDO are positively correlated, using molecular dynamics simulations. Our study thus paves the way for the precision assembly of DNA nanostructures toward higher complexity.
Asunto(s)
ADN , Nanoestructuras , ADN Intergénico , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Hibridación de Ácido Nucleico , NanotecnologíaRESUMEN
Pressure-induced surface-enhanced Raman spectroscopy (PI-SERS) has garnered significant attention as a subfield of SERS detection due to its capacity to regulate the band gap between molecules and substrates through pressure modulation. Currently, SERS detection primarily focuses on single molecules at atmospheric pressure with limited investigations conducted under high pressure conditions. Herein, we employed rose-shaped MoS2 nanoflowers as the SERS substrate and realized selective PI-SERS enhancement of R6G molecules in the binary (MV+R6G) and ternary (MV+R6G+RhB) systems. The MoS2 demonstrated an exceptionally low SERS detection limit of 5 × 10-6 M in binary and ternary systems with equimolar amounts of molecules. High-pressure experimental results indicate that MoS2 displays selective enhancement for R6G molecules, as evidenced by the comparison of the PI-SERS peak intensity ratio between MoS2 and the probe molecules. The proposed enhancement mechanism in binary and ternary SERS systems under high pressure involves pressure-induced changes in both the band structures of the MoS2 substrate and molecules, thereby influencing their charge transfer dynamics. Consequently, this approach holds great promise for practical applications in complex SERS systems operating under extreme conditions.
RESUMEN
While nitrogen-vacancy (NV) centers in diamonds have emerged as promising solid-state quantum emitters for sensing applications, the tantalizing possibility of coupling them with photonic or broadband plasmonic nanostructures to create ultrasensitive biolabels has not been fully realized. Indeed, it remains technologically challenging to create free-standing hybrid diamond-based imaging nanoprobes with enhanced brightness and high temporal resolution. Herein, we leverage the bottom-up DNA self-assembly to develop hybrid free-standing plasmonic nanodiamonds, which feature a closed plasmonic nanocavity completely encapsulating a single nanodiamond. Correlated single nanoparticle spectroscopical characterizations suggest that the plasmonic nanodiamond displays dramatically and simultaneously enhanced brightness and emission rate. We believe that they hold huge potential to serve as a stable solid-state single-photon source and could serve as a versatile platform to study nontrivial quantum effects in biological systems with enhanced spatial and temporal resolution.
RESUMEN
Dynamic molecular interactions in chemical reaction networks lead to complex behaviors in living systems. Whereas recent advances in programming DNA molecular reactions have reached a high level of complexity at molecular and nanometer scales, achieving programmable autonomous behavior at submicron or even larger scales remains challenging. Here, we present a mechanism of meta-DNA strand displacement reactions (M-SDRs) that is mediated solely by meta-toehold (M-toehold) using versatile submicron building blocks of meta-DNA (M-DNA). M-SDR emulates the toehold binding and branch migration processes of conventional strand displacement. Importantly, the kinetics of M-SDR can be modulated over a range of five orders of magnitude reaching a maximum rate of about 1.62 × 105 M-1 s-1. Further, we demonstrate the use of M-SDR to program autonomous reconfiguration in information transmission and logical computation systems. We envision that M-SDR serves as a versatile mechanism for emulating autonomous behavior approaching the cellular level.
Asunto(s)
ADN , Lógica , ADN/química , CinéticaRESUMEN
Two-dimensional (2D) amorphous materials could outperform their crystalline counterparts toward various applications because they have more defects and reactive sites and thus could exhibit a unique surface chemical state and provide an advanced electron/ion transport path. Nevertheless, it is challenging to fabricate ultrathin and large-sized 2D amorphous metallic nanomaterials in a mild and controllable manner due to the strong metallic bonds between metal atoms. Here, we reported a simple yet fast (10 min) DNA nanosheet (DNS)-templated method to synthesize micron-scale amorphous copper nanosheets (CuNSs) with a thickness of 1.9 ± 0.4 nm in aqueous solution at room temperature. We demonstrated the amorphous feature of the DNS/CuNSs by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Interestingly, we found that they could transform to crystalline forms under continuous electron beam irradiation. Of note, the amorphous DNS/CuNSs exhibited much stronger photoemission (â¼62-fold) and photostability than dsDNA-templated discrete Cu nanoclusters due to the elevation of both the conduction band (CB) and valence band (VB). Such ultrathin amorphous DNS/CuNSs hold great potential for practical applications in biosensing, nanodevices, and photodevices.
Asunto(s)
Cobre , ADN , Replicación del ADN , Transporte de Electrón , ElectronesRESUMEN
Dendrobium huoshanense is a famous edible and medicinal herb, and polysaccharides are the main bioactive component in it. In this study, response surface methodology (RSM) combined with a Box-Behnken design (BBD) was used to optimize the enzyme-assisted extraction (EAE), ultrasound-microwave-assisted extraction (UMAE), and hot water extraction (HWE) conditions and obtain the polysaccharides named DHP-E, DHP-UM, and DHP-H. The effects of different extraction methods on the physicochemical properties, structure characteristics, and bioactivity of polysaccharides were compared. The differential thermogravimetric curves indicated that DHP-E showed a broader temperature range during thermal degradation compared with DHP-UM and DHP-H. The SEM results showed that DHP-E displayed an irregular granular structure, but DHP-UM and DHP-H were sponge-like. The results of absolute molecular weight indicated that polysaccharides with higher molecular weight detected in DHP-H and DHP-UM did not appear in DHP-E due to enzymatic degradation. The monosaccharide composition showed that DHPs were all composed of Man, Glc, and Gal but with different proportions. Finally, the glycosidic bond types, which have a significant effect on bioactivity, were decoded with methylation analysis. The results showed that DHPs contained four glycosidic bond types, including Glcp-(1â, â4)-Manp-(1â, â4)-Glcp-(1â, and â4,6)-Manp-(1â with different ratios. Furthermore, DHP-E exhibited better DPPH and ABTS radical scavenging activities. These findings could provide scientific foundations for selecting appropriate extraction methods to obtain desired bioactivities for applications in the pharmaceutical and functional food industries.
Asunto(s)
Antioxidantes , Dendrobium , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Dendrobium/química , Peso Molecular , Monosacáridos/análisis , Polisacáridos/farmacología , Polisacáridos/químicaRESUMEN
Myosoton aquaticum L. is a competitive broadleaf weed commonly found in wheat fields in China and has become challenging due to its evolving herbicide resistance. In this study, one subpopulation, RF1 (derived from the tribenuron-methyl-resistant population HN10), with none of the known acetolactate synthase (ALS) resistance mutations was confirmed to exhibit resistance to tribenuron-methyl (SU), pyrithiobacsodium (PTB), florasulam (TP), flucarbazone-Na (SCT), and diflufenican (PDS). In vitro ALS activity assays showed that the total ALS activity of RF1 was lower than that of the susceptible (S) population. However, there was no difference in ALS gene expression induced by tribenuron-methyl between the two populations. The combination of the cytochrome P450 monooxygenase (P450) inhibitor malathion and tribenuron-methyl resulted in the RF1 population behaving like the S population. The rapid P450-mediated tribenuron-methyl metabolism in RF1 plants was also confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. In addition, approximately equal glutathione S-transferase (GST) activity was observed in RF1 and S plants of untreated and tribenuron-methyl treated groups. This study reported one M. aquaticum L. population without ALS resistance mutations exhibiting resistance to ALS inhibitors and the PDS inhibitor diflufenican, and the non-target-site resistance mechanism played a vital role in herbicide resistance.
Asunto(s)
Acetolactato Sintasa , Caryophyllaceae , Herbicidas , Acetolactato Sintasa/metabolismo , Caryophyllaceae/genética , Cromatografía Liquida , Resistencia a los Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacología , Proteínas de Plantas/metabolismo , Espectrometría de Masas en TándemRESUMEN
Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide-co-bis-acrylamide (Am-BIS), poly(ethylene glycol) diacrylate (PEGDA), and gelatin-methacryloyl (GelMA) that swell extensively in response to specific DNA sequences. A common mechanism, a polymerization motor that induces swelling is driven by a cascade of DNA hairpin insertions into hydrogel crosslinks. These multicomponent hydrogels can be photopatterned into distinct shapes, have a broad range of mechanical properties, including tunable shear moduli between 297 and 3888 Pa and enhanced biocompatibility. Human cells adhere to the GelMA-DNA gels and remain viable during ≈70% volumetric swelling of the gel scaffold induced by DNA sequences. The results demonstrate the generality of sequential DNA hairpin insertion as a mechanism for inducing shape change in multicomponent hydrogels, suggesting widespread applicability of polymerization motor gels in biomaterials science and engineering.
Asunto(s)
Gelatina , Hidrogeles , Materiales Biocompatibles , ADN , Humanos , PolimerizacionRESUMEN
Self-assembly nanofabrication is increasingly appealing in complex nanostructures, as it requires fewer materials and has potential to reduce feature sizes. The use of DNA to control nanoscale and microscale features is promising but not fully developed. In this work, we study self-assembled DNA nanotubes to fabricate gold nanowires for use as interconnects in future nanoelectronic devices. We evaluate two approaches for seeding, gold and palladium, both using gold electroless plating to connect the seeds. These gold nanowires are characterized electrically utilizing electron beam induced deposition of tungsten and four-point probe techniques. Measured resistivity values for 15 successfully studied wires are between 9.3 × 10-6 and 1.2 × 10-3 Ωm. Our work yields new insights into reproducible formation and characterization of metal nanowires on DNA nanotubes, making them promising templates for future nanowires in complex electronic circuitry.
Asunto(s)
ADN/química , Nanopartículas del Metal/química , Nanotubos/química , Nanocables/química , Oro/química , Nanoestructuras/químicaRESUMEN
BACKGROUND: Water chickweed (Myosoton aquaticum (L.)) is a dicot broadleaf weed that is widespread in winter fields in China, and has evolved serious resistance to acetolactate synthase (ALS) inhibiting herbicides. RESULTS: We identified a M. aquaticum population exhibiting moderate (6.15-fold) resistance to tribenuron-methyl (TM). Target-site ALS gene sequencing revealed no known resistance mutations in these plants, and the in vitro ALS activity assays showed no differences in enzyme sensitivity between susceptible and resistant populations; however, resistance was reversed by pretreatment with the cytochrome P450 (CYP) monooxygenase inhibitor malathion. An RNA sequencing transcriptome analysis was performed to identify candidate genes involved in metabolic resistance, and the unigenes obtained by de novo transcriptome assembly were annotated across seven databases. In total, 34 differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time (qRT)-PCR. Ten consistently overexpressed contigs, including four for CYP, four for ATP-binding cassette (ABC) transporter, and two for peroxidase were further validated by qRT-PCR using additional plants from resistant and susceptible populations. Three CYP genes (with homology to CYP734A1, CYP76C1, and CYP86B1) and one ABC transporter gene (with homology to ABCC10) were highly expressed in all resistant plants. CONCLUSION: The mechanism of TM resistance in M. aquaticum is controlled by NTSR rather than TSR. Four genes, CYP734A1, CYP76C1, CYP86B1, and ABCC10 could play essential role in metabolic resistance to TM and justify further functional studies. To our knowledge, this is the first large-scale transcriptome analysis of genes associated with NTSR in M. aquaticum using the Illumina platform. Our data provide resource for M. aquaticum biology, and will facilitate the study of herbicide resistance mechanism at the molecular level in this species as well as in other weeds.
Asunto(s)
Arilsulfonatos/farmacología , Caryophyllaceae/efectos de los fármacos , Genes Esenciales , Resistencia a los Herbicidas/fisiología , Acetolactato Sintasa/genética , Caryophyllaceae/genética , Caryophyllaceae/fisiología , Sistema Enzimático del Citocromo P-450/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Malatión/farmacología , Anotación de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Malezas/efectos de los fármacos , Malezas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARNRESUMEN
Herbicide target-site resistance mutations may cause pleiotropic effects on plant ecology and physiology. The effect of several known (Pro197Ser, Pro197Leu Pro197Ala, and Pro197Glu) target-site resistance mutations of the ALS gene on both ALS functionality and plant vegetative growth of weed Myosoton aquaticum L. (water chickweed) have been investigated here. The enzyme kinetics of ALS from four purified water chickweed populations that each homozygous for the specific target-site resistance-endowing mutations were characterized and the effect of these mutations on plant growth was assessed via relative growth rate (RGR) analysis. Plants homozygous for Pro197Ser and Pro197Leu exhibited higher extractable ALS activity than susceptible (S) plants, while all ALS mutations with no negative change in ALS kinetics. The Pro197Leu mutation increased ALS sensitivity to isoleucine and valine, and Pro197Glu mutation slightly increased ALS sensitivity to isoleucine. RGR results indicated that none of these ALS resistance mutations impose negative pleiotropic effects on relative growth rate. However, resistant (R) seeds had a lowed germination rate than S seeds. This study provides baseline information on ALS functionality and plant growth characteristics associated with ALS inhibitor resistance-endowing mutations in water chickweed.
Asunto(s)
Acetolactato Sintasa/antagonistas & inhibidores , Caryophyllaceae/enzimología , Inhibidores Enzimáticos/farmacología , Herbicidas/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Caryophyllaceae/genética , Caryophyllaceae/crecimiento & desarrollo , Inhibidores Enzimáticos/química , Resistencia a los Herbicidas , Herbicidas/química , Cinética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Graphene oxide (GO) is widely used in biosensors and bioimaging because of its high quenching efficiency, facile chemical conjugation, unique amphiphile property, and low cost for preparation. However, the nanometer size effect of GO on GO-DNA interaction has long been ignored and remains unknown. Here we examined the nanometer size effect of GO on GO-DNA interactions. We concluded that GO of â¼200 nm (lateral nanometer size) possessed the highest fluorescence quenching efficiency whereas GO of â¼40 nm demonstrated much weaker ability to quench the fluorescence. We employed the nanometer size effect of GO to program the dynamic ranges and sensitivity of mercury sensors. Three dynamic ranges (1 to 40 nM, 1 to 15 nM, and 0.1 to 5 nM) were obtained with this size modulation. The sensitivity (slope of titration curve) was programmed from 15.3 ± 1.27 nM(-1) to 106.2 ± 3.96 nM(-1).
Asunto(s)
ADN/química , Grafito/química , Nanoestructuras/química , Fluorescencia , Iones , Mercurio/química , Nanotecnología , Tamaño de la PartículaRESUMEN
High-fidelity patterning of DNA origami nanostructures on various interfaces holds great potential for nanoelectronics and nanophotonics. However, distortion of a DNA origami often occurs due to the strong interface interactions, e.g., on two-dimensional (2D) materials. In this study, we discovered that the adsorption of silica precursors in rapid silicification can prevent the distortion caused by graphene and generates a high shape-fidelity DNA origami-silica composite on a graphene interface. We found that an incubation time of 1 min and silicification time of 16 h resulted in the formation of DNA origami-silica composites with the highest shape fidelity of 99%. By comparing the distortion of the DNA origami on the graphene interface with and without silicification, we observed that rapid silicification effectively preserved the integrity of the DNA origami. Statistical analysis of scanning electron microscopy data indicates that compared to bare DNA origami, the DNA origami-silica composite has an increased shape fidelity by more than two folds. Furthermore, molecular dynamics simulations revealed that rapid silicification effectively suppresses the distortion of the DNA origami through the interhelical insertion of silica precursors. Our strategy provides a simple yet effective solution to maintain the shape-fidelity DNA origami on interfaces that have strong interaction with DNA molecules, expanding the applicable interfaces for patterning 2D DNA origamis.
Asunto(s)
Grafito , Nanoestructuras , Microscopía de Fuerza Atómica , Grafito/química , Nanoestructuras/química , ADN/química , Dióxido de Silicio/químicaRESUMEN
Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.
Asunto(s)
Nanoestructuras , Nanotecnología , Nanotecnología/métodos , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Microscopía de Fuerza AtómicaRESUMEN
Realization of a high-quality back electrode interface (BEI) with suppressed recombination is crucial for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. To achieve this goal, the construction of a traditional chemical passivation effect has been widely adopted and investigated. However, there is currently a lack of reports concerning the construction of a field passivation effect (FPE) for the BEI. Herein, considering the characteristic of the negligible difference in ionic radius between Mo (0.65 Å) and V (0.64 Å) as well as the presence of one less valence electron compared to Mo, vanadium (V) was employed and in situ incorporated into the MoSe2 interfacial layer during the deposition of the Mo:V electrode and selenization process. This allowed for the establishment of a desirable in situ VI-FPE interface with p-MoSe2:V/p-CZTSSe at the BEI. The p-type characteristic in MoSe2:V is attributed to the presence of the VMo acceptor; notably, the Fermi energy level of MoSe2:V has shifted downward by 0.62 eV compared to MoSe2, thereby facilitating the formation of an optimized band alignment between MoSe2:V and the absorber. Consequently, the photovoltaic parameters of the cell-FPE have experienced a significant increase due to the enhanced carrier transportation efficiency compared to cell-ref, resulting in a remarkable improvement in efficiency from 8.28 to 11.11%.
RESUMEN
Adolescence is a high-risk life stage for obesity. Digital strategies are needed to prevent and manage obesity among adolescents. We assessed if digital health interventions are contributing to disparities in obesity outcomes and assessed the adequacy of reporting of digital health equity criteria across four levels of influence within the digital environment. The systematic search was conducted on 10 major electronic databases and limited to randomized controlled trials (RCTs) or cluster-RCTs for prevention or management of obesity among 10-19 year olds. Primary outcome was mean body mass index (BMI), or BMI z-score change. The Adapted Digital Health Equity Assessment Framework was applied to all studies. Thirty-three articles (27 unique studies with 8483 participants) were identified, with only eight studies targeting adolescents from disadvantaged populations. Post-intervention, only three studies reported significantly lower BMI outcomes in the intervention compared to control. Of the 432 digital health equity criteria assessed across 27 studies, 82% of criteria were "not addressed." Studies are not addressing digital health equity criteria or inadequately reporting information to assess if digital health interventions are contributing to disparities in obesity outcomes. Enhanced reporting is needed to inform decision-makers and support the development of equitable interventions to prevent and manage obesity among adolescents.
RESUMEN
Abnormal levels of zinc ions within endo-lysosomes have been implicated in the progression of Alzheimer's disease (AD), yet the detection of low-concentration zinc ions at the organelle level remains challenging. Here we report the design of an endo-lysosome-targeted fluorescent reporter, Znluorly, for imaging endogenous zinc ions. Znluorly is constructed from an amphiphilic DNA framework (DNF) with programmable size and shape, which can encapsulate zinc-responsive fluorophores within its hydrophobic nanocavity. We find that the tetrahedral DNFs of 20 bp in the edge length are effectively located within endo-lysosomes, which can detect zinc ions with a detection limit of â¼31.9 nM (a sensitivity that is â¼2.5 times that of the free fluorophore). Given the organelle-targeting ability and high zinc sensitivity of Znluorly, we employ it to detect endogenous endo-lysosomal zinc ions in neuron cells. We monitor the dynamics of zinc levels in AD model cells and zebrafish, corroborating the positive correlation between zinc levels and AD hallmarks including Aß aggregates and learning/memory impairments. Our study provides a generalizable strategy for organelle-specific theranostic applications.
RESUMEN
Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of â1)-Fruf-(2â, Fruf-(1â and Glcp-(1â residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 â [2)-ß-D-Fruf-(1 â 2)-ß-D-Fruf-(1]26 â 2)-ß-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.
Asunto(s)
Codonopsis , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Codonopsis/química , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Antioxidantes/farmacologíaRESUMEN
Amaranthus retroflexus L. is a highly competitive broadleaf weed of corn-soybean rotation in northeastern China. In recent years, the herbicide(s) resistance evolution has been threatening its effective management in crop fields. One resistant A. retroflexus (HW-01) population that survived the protoporphyrinogen oxidase (PPO) inhibitor fomesafen and acetolactate synthase (ALS) inhibitor nicosulfuron applied at their field-recommended rate was collected from a soybean field in Wudalianchi City, Heilongjiang Province. This study aimed to investigate the resistance mechanisms of fomesafen and nicosulfuron and determine the resistance profile of HW-01 to other herbicides. Whole plant dose-response bioassays revealed that HW-01 had evolved resistance to fomesafen (50.7-fold) and nicosulfuron (5.2-fold). Gene sequencing showed that the HW-01 population has a mutation in PPX2 (Arg-128-Gly) and a rare mutation in ALS (Ala-205-Val, eight/twenty mutations/total plants). In vitro enzyme activity assays showed that ALS extracted from the HW-01 plants was less sensitive to nicosulfuron (3.2-fold) than ST-1 plants. Pre-treatment with the cytochrome P450 inhibitors malathion, piperonyl butoxide (PBO), 3-amino-1,2,4-triazole (amitrole), and the GSTs inhibitor 4-chloro-7-nitrobenzofurazan (NBD-Cl) significantly increased fomesafen and nicosulfuron sensitivity in the HW-01 population compared with that of the sensitive (S) population ST-1. Moreover, the rapid fomesafen and nicosulfuron metabolism in the HW-01 plants was also confirmed via HPLC-MS/MS analysis. Furthermore, the HW-01 population showed multiple resistance (MR) to PPO, ALS, and PSII inhibitors, with resistance index (RI) values ranging from 3.8 to 9.6. This study confirmed MR to PPO-, ALS-, and PSII-inhibiting herbicides in the A. retroflexus population HW-01, as well as confirming that the cytochrome P450- and GST-based herbicide metabolic along with TSR mechanisms contribute to their multiple resistance to fomesafen and nicosulfuron.