Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 35(12): 4387-4396, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30346184

RESUMEN

The equilibrium state of a droplet deposited on chemically heterogeneous surfaces is studied by using many-body dissipative particle dynamics. The length ratio covers 2 orders from 0.01 to 1 and allows a systematical inspection of the changes of the droplet shape, contact angle, and aspect ratio with this parameter. Moreover, a new parameter, global aspect ratio, is introduced to better characterize the distortion of the droplet. It is found that the droplet shape at the equilibrium stage strongly lies on the deposition position when the length ratio is beyond 0.1. Additionally, the lateral displacement is observed when depositing the droplet on the border of two stripes at large length ratios (over 0.1). On the other hand, the Cassie area fraction also has a significant effect on the wetting behaviors. When the droplet is driven by a body force with a 45° inclined angle to the stripes, the moving direction could be strictly in line with the force direction, deviating from the force direction, or totally in line with the stripes, depending on the length ratio.

2.
Langmuir ; 35(30): 9970-9978, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31295001

RESUMEN

Droplets sliding on surfaces always exhibit an advancing and a receding contact angle. When exerting different driving forces on the droplet to force it to slide at different velocities, the droplet would alter its shape to adapt to the new motion. Hence, different advancing/receding contact angles are likely to be observed, leading to the multiple contact angle hysteresis on a given surface. To verify this hypothesis, many-body dissipative particle dynamics is employed to perform the sliding simulation on both chemically homogeneous and heterogeneous surfaces. By ensuring the droplet sliding in uniform motions under different driving forces, the advancing/receding contact angles are recorded for analysis. Simulation results show that, for homogeneous surfaces, a larger driving force can result in both larger advancing contact angle and smaller receding contact angle, while for heterogeneous surfaces, increasing the driving force only results in smaller receding contact angles. For both cases, multiple contact angle hysteresis can be observed. These observations are contrary to the currently prevailing opinion, which believes that the contact angle hysteresis should be unique on given surfaces. Our findings would advance the understanding of wetting phenomena and possibly inspire new guidance for the design of functional interfaces.

3.
Environ Sci Technol ; 53(14): 8314-8323, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31241309

RESUMEN

Graphene-based laminar membranes open new avenues for water treatment; in particular, reduced graphene oxide (rGO) membranes with high stability in aqueous solutions are gaining increased attention for desalination. However, the low water permeability of these membranes significantly limits their applications. In this study, the water permeability of thermally reduced GO membrane was increased by a factor of 26 times by creating in-plane nanopores with an average diameter of ∼3 nm and a high density of 2.89 × 1015 m-2 via H2O2 oxidation. These in-plane nanopores provide additional transport channels and shorten the transport distance for water molecules. Meanwhile, salt rejection of this membrane is dominated by both the Donnan effect and the size exclusion of the interspaces. Besides, the water permeability and salt rejection of the thermally reduced nanoporous GO membrane can also be simply tuned by adjusting the thermal treatment time and membrane thickness. Additionally, the fabricated membrane exhibited a relatively stable rejection of Na2SO4 during the long-term testing. This work demonstrates a novel and effective strategy for fabricating high-performance laminar rGO membranes for desalination applications.


Asunto(s)
Grafito , Nanoporos , Peróxido de Hidrógeno , Membranas Artificiales , Óxidos
4.
Sci Total Environ ; 930: 172642, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670374

RESUMEN

Understanding the removal of heavy metals (HMs) in permeable pavement systems is of great significance for controlling urban runoff pollution and optimizing structural design. However, few studies have systematically investigated the mechanism of permeable pavement systems in removing HMs from stormwater runoff. In this study, we adopted a hierarchical strategy to understand the efficiency of individual structural layers on HMs removal in a permeable interlocking concrete pavement (PICP) system. Experimental results illuminated that the surface layer exhibited the highest uptakes of HMs, which can remove up to 64 % of Pb2+, 50 % of Cu2+, 28 % of Cd2+ and 13 % of Zn2+. Meanwhile, as the rainfall return period increased, the removal rates of HMs in PICP was gradually decreased. In addition, batch experiments were conducted and the adsorption results were in accordance with the rainfall filtration experiments. More importantly, X-ray Photoelectron Spectroscopy (XPS) and leaching results were investigated to understand the HMs removal mechanism, which found that the ion exchange is the main mechanism in the surface layer to remove HMs, whereas the chemical adsorption play a crucial role in the base and sub-base layers. Overall, these findings provided new insights into the transport patterns of HMs in the internal structural layers of the PICP.

5.
Sci Total Environ ; 904: 166673, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659539

RESUMEN

In this study, we explored the impact of RDS particle size on the migration dynamics of RDS and naphthalene through rigorous wash-off experiments. The results illuminated that smaller RDS particles showed higher mobility in stormwater runoff. On the other hand, RDS particles larger than 150 µm showed migration ratios below 2 %, suggesting that naphthalene adsorbed on larger RDS primarily migrated in dissolved form. Furthermore, we investigated the migration behaviors of RDS and naphthalene under varied conditions, including rainfall intensity, duration, and naphthalene concentrations. Larger rainfall intensity promoted the naphthalene release from RDS, while long rainfall duration (≥10 min) impeded the migration velocities (≤2.91 %/5 min for RDS, and ≤3.32 %/5 min for corresponding naphthalene) of RDS and naphthalene. Additionally, higher naphthalene concentrations in RDS diminished migration ratios of dissolved naphthalene. Significantly, the maximum uptake of naphthalene on RDS was 6.02 mg/g by the adsorption Langmuir isotherm. Importantly, the adsorption process of naphthalene in RDS is primarily governed by the physical adsorption, as demonstrated by the successive desorption experiments, which showed the desorption rate of up to 87.32 %. Moreover, advanced characterizations such as XPS, FTIR and Raman spectra further confirmed the physical nature of the adsorption process. These findings may help the understanding of the migration behavior of other pollutants in urban surface particulates.

6.
Nat Commun ; 14(1): 286, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653373

RESUMEN

Controllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.2 × 8.9 Å can transport cations rapidly, with one to two orders of magnitude higher conductivities and mobilities than MOF channels of hybrid pore configurations and sizes, including Al-TCPP with 1D ~8 Å channels connected by 2D ~6 Å interlayers, and 3D UiO-66 channels of ~6 Å windows and 9 - 12 Å cavities. Furthermore, the 3D MOF channels exhibit better ion sieving properties than those of 1D and 2D MOF channels. Theoretical simulations reveal that ion transport through 2D and 3D MOF channels should undergo multiple dehydration-rehydration processes, resulting in higher energy barriers than pure 1D channels. These findings offer a platform for studying ion transport properties at angstrom-scale confinement and provide guidelines for improving the efficiency of ionic separations and nanofluidics.

7.
Nat Commun ; 14(1): 236, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646676

RESUMEN

Although two-dimensional (2D) materials have grown into an extended family that accommodates hundreds of members and have demonstrated promising advantages in many fields, their practical applications are still hindered by the lack of scalable high-yield production of monolayer products. Here, we show that scalable production of monolayer nanosheets can be achieved by a facile ball-milling exfoliation method with the assistance of viscous polyethyleneimine (PEI) liquid. As a demonstration, graphite is effectively exfoliated into graphene nanosheets, achieving a high monolayer percentage of 97.9% at a yield of 78.3%. The universality of this technique is also proven by successfully exfoliating other types of representative layered materials with different structures, such as carbon nitride, covalent organic framework, zeolitic imidazolate framework and hexagonal boron nitride. This scalable exfoliation technique for monolayer nanosheets could catalyze the synthesis and industrialization of 2D nanosheet materials.

8.
Chemosphere ; 260: 127535, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32683026

RESUMEN

Integrated ultrafiltration (UF) membrane technology has attracted extensive attention in drinking water treatment due to its excellent performance and small footprint. However, membrane modules normally are static in membrane tanks, which cause a gradual increase in the cake layer thickness over time, thus resulting in severe membrane fouling. To overcome this shortcoming, we report an effective strategy to regulate cake layer thickness by rotating the membrane module in the presence of flocs. The results showed that the cake layer thickness can be effectively reduced because of the floc looseness, resulting in the alleviation of membrane fouling. The higher the module rotation speed, the higher the flow velocity in the membrane tank and the larger the shearing force on the cake layer surface. As a result, the membrane fouling was considerably mitigated, and it was interesting that the pollutant removal efficiency was hardly influenced. With module rotation, we found that acid solutions displayed a better performance in removing pollutants (even low molecular weight pollutants) and alleviating membrane fouling compared to the alkaline conditions because of the smaller floc size, larger floc specific surface area, and higher floc positive charge. Additionally, an excellent UF membrane performance was also observed with the raw water taken from the South-North water in China. Collectively, this study demonstrated that floc-based cake layers can be effectively regulated with module rotation, which has a great potential in drinking water treatment application, particularly in small water plants.


Asunto(s)
Ultrafiltración/métodos , Purificación del Agua/métodos , China , Membranas Artificiales , Peso Molecular
9.
Nanoscale ; 12(10): 6012-6019, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32119010

RESUMEN

Layered materials with porous layers are of great interest due to their intriguing structural topologies and potential applications as new adsorbents. In this study, a layered aluminum-based metal-organic framework, i.e. Al-TCPP, was successfully synthesized via a facile method for the adsorptive removal of nitrobenzene (NB). The as-synthesized Al-TCPP exhibited a typical layered structure and can be stable in water at pH = 5-7. Batch experimental results showed a superior adsorption performance towards NB with a maximum adsorption capability of 1.85 mg mg-1, and an exceptionally rapid equilibrium within 1 min, yielding an overall adsorptive performance superior to the state-of-the-art NB adsorbents reported so far. The morphology and crystallinity of the Al-TCPP adsorbent basically retain the original status after the capture of NB. Importantly, X-ray diffraction patterns of the samples after the NB adsorption revealed that the possible NB intercalation took place in layered Al-TCPP and expanded the interlayer space during the adsorption, which greatly enriched the adsorption sites and thus achieved the outstanding performance. This work highlights new prospects in designing layered materials for use in environmental remediation.

10.
J Hazard Mater ; 395: 122696, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32330778

RESUMEN

The recovery of value-added materials from coal ash waste is of highly economic value and sustainable significance. However, researches on the synthesis of defect-engineering nanomaterials from coal ash are still blank. Herein, iron oxide (Fe1.72Al0.28O3, simplified as FAO) nanoflakes were successfully synthesized from a brown coal fly ash (BCFA) waste. The obtained FAO nanoflakes possess a round-shape morphology with a diameter of around 300 nm and 50 nm in thickness. With the progress of hydrothermal treatment, the impure Al3+ gradually replaced part of the Fe3+ in the α-Fe2O3 crystal. Specifically, Al3+ was preferentially adsorbed on the (001) facet, hindering the growth of Fe3+ on the [001] direction and thus causing the flattening of the resultant FAO. The introduced Al3+ also serves as the disordered defects on the hematite surface, leading to decreased crystal parameters for hematite, the formation of a compact first shell and a reduced periodical symmetry for the central cation Fe3+. The defects were also found to significantly improve the adsorption capacity of the resultant FAO for Cr(VI), As(V), As(III) and Congo red in waste water, with the maximum adsorption capacity of 68.3, 80.6, 61.1 and 213.8 mg g-1, respectively. Cyclic tests also confirmed a relatively strong stability for the as-synthesised adsorbents.

11.
Sci Adv ; 6(23): eaay3998, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32548253

RESUMEN

Owing to the rich porosity and uniform pore size, metal-organic frameworks (MOFs) offer substantial advantages over other materials for the precise and fast membrane separation. However, achieving ultrathin water-stable MOF membranes remains a great challenge. Here, we first report the successful exfoliation of two-dimensional (2D) monolayer aluminum tetra-(4-carboxyphenyl) porphyrin framework (termed Al-MOF) nanosheets. Ultrathin water-stable Al-MOF membranes are assembled by using the exfoliated nanosheets as building blocks. While achieving a water flux of up to 2.2 mol m-2 hour-1 bar-1, the obtained 2D Al-MOF laminar membranes exhibit rejection rates of nearly 100% on investigated inorganic ions. The simulation results confirm that intrinsic nanopores of the Al-MOF nanosheets domain the ion/water separation, and the vertically aligned aperture channels are the main transport pathways for water molecules.

12.
ACS Appl Mater Interfaces ; 10(40): 34464-34474, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30211533

RESUMEN

A novel thin-film nanocomposite forward-osmosis (FO) membrane was fabricated on hydrophilic nylon microfiltration (MF) support by interfacial polymerization with the assistance of an intermediate layer of graphene oxide and multiwall carbon nanotube (GO/MWCNT). The chemical composition, structure, and surface properties of the synthesized FO membranes were studied using various characterization methods. It was found that the GO/MWCNT composite layer not only provided ultrafast nanochannels for water transport but also reduced the thickness of the polyamide layer by up to 60%. As a result, the novel FO membrane exhibited a higher water flux and lower reverse salt flux compared with the membrane synthesized without the GO/MWCNT intermediate layer. This method offers promising opportunities to fabricate thin-film composite membranes on microfiltration substrates for FO application with inhibited concentration polarization phenomenon and expected separation performance.

13.
Chem Commun (Camb) ; 53(98): 13161-13164, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29177349

RESUMEN

The isolation of few-layer two-dimensional (2D) metal-organic framework (MOF) sheets has been achieved at an elevated solvothermal reaction temperature. The 2D porphyrin paddlewheel framework-1 (PPF-1) MOF nanosheets (NS) are ultrathin (2.5 nm) and have large lateral dimensions (over 2 µm). The yield of PPF-1 NS was also increased to 71.7% with increasing the reaction temperature. The results revealed that the formation of PPF-1 NS was attributed to the enlarged interlayer space and accelerated crystal growth rate along the lateral direction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA