Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Phys Lipids ; 264: 105422, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097133

RESUMEN

Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.


Asunto(s)
Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/biosíntesis , Animales
2.
Food Chem ; 455: 139907, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823130

RESUMEN

Medium and long-chain triacylglycerol (MLCT) rich in n-3 polyunsaturated fatty acids (PUFAs) were obtained in three-hour interesterification of fish oil with medium-chain triacylglycerol (MCTs), using lipase bio-imprinted with surfactant as a catalyst. Initially, for bio-imprinted lipase preparation, the interesterification reaction conditions were optimized, resulting in a lipase with 1.47 times higher catalytic activity compared to control (non-bio-imprinted). Afterwards, the reaction conditions for MLCT synthesis were optimized, using bio-imprinted lipase as a catalyst. The reaction reached equilibrium within first three hours at 70 °C temperature, 4 wt% lipase load, and molar ratio of substrate 1:1.5. Under these conditions, final product contained 18.52% MCT, 56.65% MLCT, and 24.83% long-chain triacylglycerol (LCT). To reduce the MCT content, a solvent extraction process was performed, yielding 2.42% MCT, 56.19% MLCT, and 41.39% LCT. The obtained structured lipids (SLs), enriched in n-3 PUFAs, offer significant health benefits, enhanced bioavailability, with potential applications in functional foods and nutraceuticals.


Asunto(s)
Ácidos Grasos Omega-3 , Aceites de Pescado , Lipasa , Triglicéridos , Lipasa/química , Lipasa/metabolismo , Triglicéridos/química , Ácidos Grasos Omega-3/química , Esterificación , Aceites de Pescado/química , Biocatálisis , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química
3.
Prog Lipid Res ; 92: 101255, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838255

RESUMEN

Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.


Asunto(s)
Ácidos Grasos Omega-3 , Humanos , Suplementos Dietéticos , Dieta , Ácidos Grasos
4.
Food Chem ; 424: 136450, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37247604

RESUMEN

Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.


Asunto(s)
Ácidos Docosahexaenoicos , Lipasa , Humanos , Lactante , Fórmulas Infantiles , Ácidos Grasos , Catálisis , Triglicéridos
5.
Int J Biol Macromol ; 223(Pt A): 1196-1207, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36347374

RESUMEN

Plant-derived soluble dietary fibers (SDF) have many important physiological functions and the applications of SDF vary based on their properties, which are worth further investigating for fiber-enriched food production. In this study, SDF derived from konjac, apple, chicory, flaxseed, orange, psyllium seed, soybean and oat were purified, and their structural, physicochemical and functional properties were systematically evaluated. Monosaccharide composition analysis showed that these SDF belonged to heteropolysaccharides, of which konjac, psyllium seed, apple, soybean and oat SDF were glucomannan, arabinoxylan, pectin, arabinogalactan and glucan, respectively. The molecular weight of konjac glucomannan (KGM, 5.22 × 106 Da) was the highest, and inulin, soybean arabinogalactan (SA) and oat glucan (OG) had higher water solubility. Moreover, KGM, apple pectin (AP), flaxseed SDF (FS) and psyllium seed arabinoxylan (PA) exhibited better water-holding capacity, swelling capacity, emulsifying activity and stability. Rheological studies and texture profile analysis suggested that KGM had the best viscosity and gelation ability. In addition, AP and orange SDF (OS) showed better α-amylase inhibitory activity, while OS and KGM had higher pancreatic lipase inhibitory activity. Also, KGM and FS displayed fine cholesterol absorption capacity. To summary, these functional properties illustrated the feasibility of SDF to regulate blood sugar and blood lipid levels.


Asunto(s)
Amorphophallus , Citrus sinensis , Psyllium , Alimentos Fortificados , Amorphophallus/química , Mananos/química , Inulina , Agua , Glycine max , Fibras de la Dieta/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA