Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526208

RESUMEN

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Dominio Catalítico , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Modelos Químicos , Modelos Moleculares , ARN Viral/metabolismo , SARS-CoV-2 , Transcripción Genética , Replicación Viral
2.
Cell ; 176(3): 636-648.e13, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682372

RESUMEN

Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/ultraestructura , Adamantano/análogos & derivados , Adamantano/metabolismo , Antituberculosos/química , Transporte Biológico , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Etilenodiaminas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestructura , Compuestos de Fenilurea/metabolismo , Rimonabant/metabolismo , Tuberculosis/microbiología
3.
J Biol Chem ; 299(6): 104825, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37196766

RESUMEN

Aberrant overexpression of nonreceptor tyrosine kinase FER (Fps/Fes Related) has been reported in various ovarian carcinoma-derived tumor cells and is a poor prognosis factor for patient survival. It plays an essential role in tumor cell migration and invasion, acting concurrently in both kinase-dependent and -independent manners, which is not easily suppressed by conventional enzymatic inhibitors. Nevertheless, the PROteolysis-TArgeting Chimera (PROTAC) technology offers superior efficacy over traditional activity-based inhibitors by simultaneously targeting enzymatic and scaffold functions. Hence in this study, we report the development of two PROTAC compounds that promote robust FER degradation in a cereblon-dependent manner. Both PROTAC degraders outperform a Food and Drug Administration-approved drug, brigatinib, in ovarian cancer cell motility suppression. Importantly, these PROTAC compounds also degrade multiple oncogenic FER fusion proteins identified in human tumor samples. These results lay an experimental foundation to apply the PROTAC strategy to antagonize cell motility and invasiveness in ovarian and other types of cancers with aberrant expression of FER kinase and highlight PROTACs as a superior strategy for targeting proteins with multiple tumor-promoting functions.


Asunto(s)
Neoplasias Ováricas , Proteínas Tirosina Quinasas , Humanos , Femenino , Proteínas Tirosina Quinasas/metabolismo , Quimera Dirigida a la Proteólisis , Proteínas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Movimiento Celular , Proteolisis
4.
Plant Physiol ; 193(4): 2592-2604, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37584314

RESUMEN

The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum). Using ClLs as the bait to screen against the cDNA library of watermelon, we identified several ClLs-interacting candidate proteins, including TENDRIL (ClTEN), PINOID (ClPID), and APETALA1 (ClAP1). Protein-protein interaction assays further demonstrated that ClLs could directly interact with ClTEN, ClPID, and ClAP1. The mRNA in situ hybridization assay revealed that the transcriptional patterns of ClLs overlapped with those of ClTEN, ClPID, and ClAP1 in the axillary meristems and leaf primordia. Mutants of ClTEN, ClPID, and ClAP1 generated by the CRISPR/Cas9 gene editing system lacked tendrils, developed round leaves, and displayed floral diapause, respectively, and all these phenotypes could be observed in ClLs knockout lines. Our findings indicate that ClLs acts as lateral organ identity protein by forming complexes with ClTEN, ClPID, and ClAP1, providing several gene targets for transforming the architecture of watermelon.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citrullus , Citrullus/genética , Arabidopsis/genética , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Morfogénesis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Theor Appl Genet ; 137(5): 100, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602584

RESUMEN

Wax gourd (Benincasa hispida (Thunb.) Cogn., 2n = 2x = 24) is an economically important vegetable crop cultivated widely in many tropical and subtropical regions, including China, India, and Japan. Both fruit and seeds are prized agronomic attributes in wax gourd breeding and production. However, the genetic mechanisms underlying these traits remain largely unexplored. In this study, we observed a strong correlation between fruit size and seed size variation in our mapping population, indicating genetic control by a single gene, BhLS, with large size being dominant over small. Through bulk segregant analysis sequencing and fine mapping with a large F2 population, we precisely located the BhLS gene within a 47.098-kb physical interval on Chromosome 10. Within this interval, only one gene, Bhi10M000649, was identified, showing homology to Arabidopsis HOOKLESS1. A nonsynonymous mutation (G to C) in the second exon of Bhi10M000649 was found to be significantly associated with both fruit and seed size variation in wax gourd. These findings collectively highlight the pleiotropic effect of the BhLS gene in regulating fruit and seed size in wax gourd. Our results offer molecular insights into the variation of fruit and seed size in wax gourd and establish a fundamental framework for breeding wax gourd cultivars with desired traits.


Asunto(s)
Arabidopsis , Cucurbitaceae , Frutas/genética , Verduras , Fitomejoramiento , Semillas/genética , Aciltransferasas/genética , Mutación
6.
Langmuir ; 40(23): 12216-12225, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805563

RESUMEN

This article reports the synthesis of a novel sulfonated fluorocarbon surfactant (SFDC) containing double C6 perfluorinated branched short chains and compares its surface properties with a similar structured compound (SFDC-L) in solutions. The critical micelle concentration (CMC) and the corresponding surface tension (γCMC) of SFDC aqueous solution are 9.77 × 10-3 mmol/L and 22.15 mN/m, respectively, indicating that SFDC has excellent surface properties. Besides, the addition of n-hexyltrimethylammonium bromide (HTAB) could further enhance the surface properties of SFDC. Meanwhile, the micellization, aggregation behavior, wettability, and adsorption at the air-water interface of SFDC and SFDC/HTAB mixture aqueous solutions are systematically investigated. Both SFDC and SFDC/HTAB show excellent wettability at low concentrations. The aggregation of SFDC and SFDC/HTAB mixtures in aqueous solution could be clearly seen as vesicles and rod-like micelles on TEM micrographs.

7.
Fish Shellfish Immunol ; 151: 109668, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838837

RESUMEN

In the present study, 59 autochthonous bacteria were isolated from the intestine of tilapia. Following enzyme producing activity, antagonistic ability, hemolytic activity, drug sensitivity assessments, and in vivo safety evaluation, 7 potential probiotic strains were screened out: Bacillus tequilensis BT0825-2 (BT), Bacillus aryabhattai BA0829-3 (BA1), Bacillus megaterium BM0505-6 (BM), Bacillus velezensis BV0505-11 (BV), Bacillus licheniformis BL0505-18 (BL), B. aryabhattai BA0505-19 (BA2), and Lactococcus lactis LL0306-15 (LL). Subsequently, tilapia were fed basal diets (CT) and basal diets supplemented with 108 CFU/g of BT, BA1, BM, BV, BL, BA2 and LL, respectively. After 56 days of continuous feeding, the growth parameters (weight gain, final weight, and specific growth rate) showed significant improvement (p < 0.05) in both BM and BA2 groups. The total cholesterol and triglycerides of serum were significantly decreased in BV and LL groups (p < 0.05). The superoxide dismutase, glutathione reductase, and lysozyme of BV, BA2 and LL groups were increased, and the malondialdehyde of BV group was significantly decreased. The villous height and amylase of midgut were increased in BV, BA2 and LL groups. In addition, the expression levels of ZO-1 and occludin genes in the midgut of tilapia were enhanced in BM, BV, BA2 and LL groups. The supplementation of probiotics reduced the abundance of Cyanobacteria and increased the abundance of Actinobacteria at the phylum level. At the genus level, the addition of probiotics increased the abundance of Romboutsia. Furthermore, improvement in the expression of immune-related genes were observed, including interleukin 1ß, interleukin 10, tumor necrosis factor alpha, and transforming growth factor beta (p < 0.05). After challenging with S. agalactiae, the survival rates of BV, BA2 and LL groups were significantly higher than CT group (p < 0.05). Above results indicated that BM, BA2, BV and LL improved growth performance, gut health or immunity of tilapia, which can be applied in tilapia aquaculture.


Asunto(s)
Alimentación Animal , Cíclidos , Resistencia a la Enfermedad , Enfermedades de los Peces , Probióticos , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Streptococcus agalactiae/fisiología , Cíclidos/inmunología , Cíclidos/crecimiento & desarrollo , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Alimentación Animal/análisis , Resistencia a la Enfermedad/efectos de los fármacos , Dieta/veterinaria , Intestinos/microbiología , Intestinos/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Bacillus/química , Bacillus/fisiología , Distribución Aleatoria
8.
Bioorg Chem ; 150: 107590, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955003

RESUMEN

The c-ros oncogene 1 (ROS1), an oncogenic driver, is known to induce non-small cell lung cancer (NSCLC) when overactivated, particularly through the formation of fusion proteins. Traditional targeted therapies focus on inhibiting ROS1 activity with ROS 1 inhibitors to manage cancer progression. However, a new strategy involving the design of protein degraders offers a more potent approach by completely degrading ROS1 fusion oncoproteins, thereby effectively blocking their kinase activity and enhancing anti-tumour potential. Utilizing PROteolysis-TArgeting Chimera (PROTAC) technology and informed by molecular docking and rational design, we report the first ROS1-specific PROTAC, SIAIS039. This degrader effectively targets multiple ROS1 fusion oncoproteins (CD74-ROS1, SDC4-ROS1 and SLC34A2-ROS1) in engineered Ba/F3 cells and HCC78 cells, demonstrating anti-tumour effects against ROS1 fusion-driven cancer cells. It suppresses cell proliferation, induces cell cycle arrest, and apoptosis, and inhibits clonogenicity. The anti-tumour efficacy of SIAIS039 surpasses two approved drugs, crizotinib and entrectinib, and matches that of the top inhibitors, including lorlatinib and taletrectinib. Mechanistic studies confirm that the degradation induced by 039 requires the participation of ROS1 ligands and E3 ubiquitin ligases, and involves the proteasome and ubiquitination. In addition, 039 exhibited excellent oral bioavailability in a mouse xenograft model, highlighting its potential for clinical application. In conclusion, our study presents a promising and novel therapeutic strategy for ROS1 fusion-positive NSCLC by targeting ROS1 fusion oncoproteins for degradation, laying the foundation for the development of further PROTAC and offering hope for patients with ROS1 fusion-positive NSCLC.


Asunto(s)
Antineoplásicos , Proliferación Celular , Descubrimiento de Drogas , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Animales , Estructura Molecular , Ratones , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proteolisis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Ratones Desnudos
9.
J Fish Dis ; 47(1): e13863, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37743602

RESUMEN

Edwardsiella piscicida, an infectious bacterium, causes great economic losses to the aquaculture industry. Immersion bath which is the closest way to how the fish infect bacterial pathogens in the natural environment is an effective route of artificial infection. In this study, the dynamic process of E. piscicida infection, in the spotted sea bass (Lateolabrax maculatus) was evaluated via the immersion bath. The results showed that soaking the spotted sea bass with 3 × 106 CFU mL-1 E. piscicida for 30 min could artificially induce edwardsiellosis. The higher culture temperature (28.5 ± 0.5°C) or the longer bath time (30 min) would lead to higher mortality of fish. E.piscicida first invaded the gill, then entered the blood circulation to infect the spleen and kidney, where it is colonized, and gradually multiplied in the liver and brain. Meanwhile, the fluorescence in situ hybridization showed that the localization of E. piscicida in the gill and foregut after the immersion challenge proceeded from the exterior to the interior. The invasion of pathogens triggers the immune response of fish and causes tissue damage to the host. The quantitative real-time PCR results displayed an increase in the relative expression level of immune genes (NK-lysin, LZM, IgM and IgD). Otherwise, the most notable histopathological changes of the infected spotted sea bass were multifocal necrosis. Findings in this study broaden our understanding of the infection conditions of E. piscicida and its pathogenicity to the spotted sea bass.


Asunto(s)
Lubina , Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Inmersión , Hibridación Fluorescente in Situ , Enfermedades de los Peces/microbiología , Edwardsiella/genética , Infecciones por Enterobacteriaceae/microbiología
10.
J Fish Dis ; 47(4): e13922, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38204197

RESUMEN

The purpose of this study was to investigate whether a defensin-like antimicrobial peptide (C-13326 peptide) identified in Hermetia illucens could possess protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The cDNA of C-13326 peptide comprised 243 nucleotides encoding 80 amino acids, with six conserved cysteine residues and the classical CSαß structure. The recombinant expression plasmid pPIC9K-C-13326 was constructed and transformed into GS115 Pichia pastoris, and the C-13326 peptide was expressed by induction with 1% methanol. The crude extract of C-13326 peptide was precipitated by ammonium sulfate, assayed by Braford method, detected by tricine-SDS-PAGE, evaluated by BandScan software and identified by liquid chromatography-mass spectrometry. The C-13326 peptide was shown to have inhibitory activity against the growth of multidrug-resistant A. schubertii DM210910 by using the minimum growth inhibitory concentration and Oxford cup method. In addition, scanning electron microscopy analysis suggested that C-13326 peptide inhibited the growth of A. schubertii DM210910 by damaging the bacterial cell membrane. To explore the role of peptide C-13326 in vivo, hybrid snakehead was fed with peptide C-13326 as feed additives for 7 days. The results revealed that C-13326 peptide could significantly down-regulate the expression levels of IL-1ß, IL-8, IL-12 and TNF-α (p < .05), and significantly improved the survival rate of hybrid snakehead after challenging with A. schubertii DM210910. Therefore, the C-13326 peptide is a promising antimicrobial agent for A. schubertii treatment in aquaculture.


Asunto(s)
Aeromonas , Enfermedades de los Peces , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Peces/genética , Aeromonas/genética , Péptidos , Defensinas/genética , Defensinas/farmacología
11.
BMC Plant Biol ; 23(1): 598, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017380

RESUMEN

BACKGROUND: The basic leucine zipper (bZIP) transcription factor family is one of the most abundant and evolutionarily conserved gene families in plants. It assumes crucial functions in the life cycle of plants, including pathogen defense, secondary metabolism, stress response, seed maturation, and flower development. Although the genome of wax gourd has been published, little is known about the functions, evolutionary background, and gene expression patterns of the bZIP gene family, which limits its utilization. RESULTS: A total of 61 bZIP genes (BhbZIPs) were identified from wax gourd (Benincasa hispida) genome and divided into 12 subgroups. Whole-genome duplication (WGD) and dispersed duplication (DSD) were the main driving forces of bZIP gene family expansion in wax gourd, and this family may have undergone intense purifying selection pressure during the evolutionary process. We selected BhbZIP58, only one in the member of subgroup B, to study its expression patterns under different stresses, including heat, salt, drought, cold stress, and ABA treatment. Surprisingly, BhbZIP58 had a dramatic response under heat stress. BhbZIP58 showed the highest expression level in the root compared with leaves, stem, stamen, pistil, and ovary. In addition, BhbZIP58 protein was located in the nucleus and had transcriptional activation activity. Overexpression of BhbZIP58 in Arabidopsis enhanced their heat tolerance. CONCLUSIONS: In this study, bZIP gene family is systematically bioinformatically in wax gourd for the first time. Particularly, BhbZIP58 may have an important role in heat stress. It will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.


Asunto(s)
Perfilación de la Expresión Génica , Genoma de Planta , Genes de Plantas , Familia de Multigenes , Respuesta al Choque Térmico/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Estrés Fisiológico/genética
12.
BMC Microbiol ; 23(1): 85, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991332

RESUMEN

BACKGROUND: Burkholderia pyrrocinia strain P10 is a plant growth-promoting rhizobacterium (PGPR) that can substantially increase peanut growth. However, the mechanisms and pathways involved in the interaction between B. pyrrocinia P10 and peanut remain unclear. To clarify complex plant-PGPR interactions and the growth-promoting effects of PGPR strains, the B. pyrrocinia P10 transcriptome changes in response to the peanut root exudate (RE) were elucidated and the effects of RE components on biofilm formation and indole-3-acetic acid (IAA) secretion were analyzed. RESULTS: During the early interaction phase, the peanut RE enhanced the transport and metabolism of nutrients, including carbohydrates, amino acids, nitrogen, and sulfur. Although the expression of flagellar assembly-related genes was down-regulated, the expression levels of other genes involved in biofilm formation, quorum sensing, and Type II, III, and VI secretion systems were up-regulated, thereby enabling strain P10 to outcompete other microbes to colonize the peanut rhizosphere. The peanut RE also improved the plant growth-promoting effects of strain P10 by activating the expression of genes associated with siderophore biosynthesis, IAA production, and phosphorus solubilization. Additionally, organic acids and amino acids were identified as the dominant components in the peanut RE. Furthermore, strain P10 biofilm formation was induced by malic acid, oxalic acid, and citric acid, whereas IAA secretion was promoted by the alanine, glycine, and proline in the peanut RE. CONCLUSION: The peanut RE positively affects B. pyrrocinia P10 growth, while also enhancing colonization and growth-promoting effects during the early interaction period. These findings may help to elucidate the mechanisms underlying complex plant-PGPR interactions, with potential implications for improving the applicability of PGPR strains.


Asunto(s)
Arachis , Exudados y Transudados , Arachis/microbiología , Aminoácidos/metabolismo , Nutrientes , Raíces de Plantas/microbiología
13.
Arch Microbiol ; 205(1): 48, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595098

RESUMEN

Tsukamurella tyrosinosolvens strain P9 is a rare actinomycete with plant growth-promoting properties and can improve the growth of peanut. We analyzed the differentially expressed genes (DEGs) of P9 under the influence of peanut root exudates from RNA-sequencing data and analyzed the effects of root exudates and their organic acid and amino acid components on the growth and growth-promoting effects of this strain to explore the molecular mechanism of the P9 response. The results showed that peanut root exudates promoted the growth and growth-promoting activity of P9. Transcriptome analysis revealed 126 DEGs in P9, comprising 81 up-regulated and 45 down-regulated genes. The DEGs were significantly enriched in 17 KEGG metabolic pathways, including arginine biosynthesis, butyric acid metabolism, fatty acid degradation, and tryptophan metabolism. Peanut root exudates induced up-regulation of nutrient transport, carbohydrate metabolism and energy production, siderophore and IAA biosynthesis, adhesion, and biofilm formation, and down-regulation of arginine biosynthesis and the urea cycle in P9. Organic acids and amino acids are the major components of peanut root exudates. Glycine, proline, and alanine promoted the growth and IAA secretion of P9. Proline, alanine (40 mM), and oxalic acid significantly enhanced siderophore biosynthesis, whereas citric acid, oxalic acid, and malic acid significantly promoted biofilm formation of P9. This study clarifies the response of T. tyrosinosolvens P9 to peanut root exudates at the molecular level, examining the molecular basis of the relationship between P9 and peanut, and provides a theoretical foundation for improved exertion of the growth-promoting properties of P9.


Asunto(s)
Arachis , Sideróforos , Arachis/metabolismo , Sideróforos/metabolismo , Aminoácidos/metabolismo , Alanina , Exudados y Transudados , Prolina/metabolismo , Arginina/metabolismo , Raíces de Plantas/metabolismo
14.
Eur Radiol ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092950

RESUMEN

OBJECTIVE: To investigate the effect of cholinergic pathways damage caused by white matter hyperintensities (WMHs) on cognitive function in moyamoya disease (MMD). METHODS: We included 62 patients with MMD from a prospectively enrolled cohort. We evaluated the burden of cholinergic pathways damage caused by WMHs using the Cholinergic Pathways Hyperintensities Scale (CHIPS). Cognitive function was evaluated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Cognitive impairment was determined according to the cut-off of MMSE and education. Multivariate linear and logistic regression models were used to analyze whether CHIPS was independently associated with cognition. Receiver operating characteristic curve analysis was performed to identify the ability of CHIPS in discriminating cognitive impairment and normal cognition. RESULTS: CHIPS was associated with both MMSE and MoCA (ß = - 0.601 and ß = - 0.672, both p < 0.001). After correcting age, sex, education, volumes of limbic areas, and other factors, CHIPS remained to be independently associated with both MMSE and MoCA (ß = - 0.388 and ß = - 0.334, both p < 0.001). In the logistic regression, only CHIPS was associated with cognitive impairment (odds ratio = 1.431, 95% confidence interval = 1.103 to 1.856, p = 0.007). The optimal cut-off of CHIPS score was 10, yielding a sensitivity of 87.5% and a specificity of 78.3% in identifying MMD patients with cognitive impairment. CONCLUSIONS: The damage of cholinergic pathways caused by WMHs plays an independent effect on cognition and CHIPS could be a useful method in identifying MMD patients likely to be cognitive impairment. CLINICAL RELEVANCE STATEMENT: This study shows that Cholinergic Pathways Hyperintensities Scale (CHIPS) could be a simple and reliable method in identifying cognitive impairment for patients with moyamoya disease. CHIPS could be helpful in clinical practice, such as guiding treatment decisions and predicting outcome. KEY POINTS: • Cholinergic Pathways Hyperintensities Scale was significantly associated with cognitive screening tests in patients with moyamoya disease. • Cholinergic Pathways Hyperintensities Scale plays an independent effect on cognitive impairment in patients with moyamoya disease. • Cholinergic Pathways Hyperintensities Scale shows higher accuracy than education, volumes of limbic areas, and sex in identifying cognitive impairment in moyamoya disease.

15.
Bioorg Chem ; 134: 106463, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924655

RESUMEN

Phenyldivinylsulfonamides emerged from a series of divinylsulfonamides, demonstrating their ability to effectively re-bridge disulfide bonds. This kind of linkers was attached to monomethyl auristatin E (MMAE) and further conjugated with a model antibody, trastuzumab. After optimization, the linker 20 can deliver stable and highly homogenous DAR (Drug-to-Antibody Ratio) four antibody-drug conjugates (ADCs). The method was also applicable for other IgG1 antibodies to obtain ADCs with controlled four payloads. Moreover, the MMAE-bearing ADC is potent, selective and efficacious against target cell lines.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Inmunoconjugados/farmacología , Inmunoconjugados/química , Línea Celular Tumoral , Trastuzumab/química , Antineoplásicos/farmacología , Antineoplásicos/química
16.
J Ultrasound Med ; 42(5): 1033-1046, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36264181

RESUMEN

OBJECTIVES: The risk of cardiovascular disease is associated with the echo intensity of carotid plaques in ultrasound images and their cardiac cycle-induced intensity variations. In this study, we aimed to 1) explore the underlying origin of echo intensity variations by using simulations and 2) evaluate the association between the two-dimensional (2D) spatial distribution of these echo intensity variations and plaque vulnerability. METHODS: First, we analyzed how out-of-plane motion and compression of simulated scattering spheres of different sizes affect the ultrasound echo intensity. Next, we propose a method to analyze the features of the 2D spatial distribution of interframe plaque echo intensity in carotid ultrasound image sequences and explore their associations with plaque vulnerability in experimental data. RESULTS: The simulations showed that the magnitude of echo intensity changes was similar for both the out-of-plane motion and compression, but for scattering objects smaller than 1 mm radius, the out-of-plane motion dominated. In experimental data, maps of the 2D spatial distribution of the echo intensity variations had a low correlation with standard B-mode echo intensity distribution, indicating complementary information on plaque tissue composition. In addition, we found the existence of ∼1 mm diameter subregions with pronounced echo intensity variations associated with plaque vulnerability. CONCLUSIONS: The results indicate that out-of-plane motion contributes to intra-plaque regions of high echo intensity variation. The 2D echo intensity variation maps may provide complementary information for assessing plaque composition and vulnerability. Further studies are needed to verify this method's role in identifying vulnerable plaques and predicting cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares , Estenosis Carotídea , Placa Aterosclerótica , Humanos , Ultrasonografía de las Arterias Carótidas , Placa Aterosclerótica/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Ultrasonografía/métodos
17.
BMC Plant Biol ; 22(1): 539, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401157

RESUMEN

BACKGROUND: Wax gourd [Benincasa hispida (Thunb) Cogn. (2n = 2x = 24)] is an economically important vegetable crop of genus Benincasa in the Cucurbitaceae family. Fruit is the main consumption organ of wax gourd. The mature fruit cuticular wax (MFCW) is an important trait in breeding programs, which is also of evolutionary significance in wax gourd. However, the genetic architecture of this valuable trait remains unrevealed. RESULTS: In this study, genetic analysis revealed that the inheritance of MFCW was controlled by a single gene, with MFCW dominant over non-MFCW, and the gene was primarily named as BhWAX. Genome-wide association study (GWAS) highlighted a 1.1 Mb interval on chromosome 9 associated with MFCW in wax gourd germplasm resources. Traditional fine genetic mapping delimited BhWAX to a 0.5 Mb region containing 12 genes. Based on the gene annotation, expression analysis and co-segregation analysis, Bhi09G001428 that encodes a membrane bound O-acyltransferase (MBOAT) was proposed as the candidate gene for BhWAX. Moreover, it was demonstrated that the efficiency of a cleaved amplified polymorphic sequences (CAPS) marker in the determination of MFCW in wax gourd reached 80%. CONCLUSIONS: In closing, the study identified the candidate gene controlling MFCW and provided an efficient molecular marker for the trait in wax gourd for the first time, which will not only be beneficial for functional validation of the gene and marker-assisted breeding of wax gourd, but also lay a foundation for analysis of its evolutionary meaning among cucurbits.


Asunto(s)
Cucurbitaceae , Estudio de Asociación del Genoma Completo , Frutas/genética , Verduras/genética , Fitomejoramiento , Mapeo Cromosómico , Cucurbitaceae/genética , Ceras
18.
Small ; 18(20): e2200049, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35434917

RESUMEN

In response to the application requirements of secondary batteries at low temperature, an all-organic dual-ion battery with calcium perchlorate contained acetonitrile as the electrolyte (CAN-ODIB) is fabricated in this work. The electrochemical energy is stored in CAN-ODIB via the association and disassociation of calcium and perchlorate ions in perylene diimide-ethylene diamine/carbon black composite based anode and polytriphenylamine based cathode with highly reversible redox states. Benefiting from the energy storage mechanism, CAN-ODIB exhibits excellent electrochemical performances in tests with the temperature ranging from 25 to -50 °C. Especially, CAN-ODIB at -50 °C reserves ≈61% of the capacity at 25 °C (83.4 mA h g-1 ) with the current density of 0.2 A g-1 . CAN-ODIB also shows excellent cycling stability at low temperature by retaining 90.3% of the initial capacity at 1.0 A g-1 after 450 charge-discharge cycles at -30 °C. The impedance analysis of CAN-ODIB at different temperatures indicates that the low temperature performance of CAN-ODIB depends more on the electrode materials than the electrolyte, which provides the important guidance for the further design of secondary batteries operable at low temperatures.

19.
Eur J Neurol ; 29(2): 450-458, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34750918

RESUMEN

BACKGROUND AND PURPOSE: The GGC repeat expansion in the NOTCH2NLC gene has been identified as the genetic cause of neuronal intranuclear inclusion disease (NIID). Recently, this repeat expansion was also reported to be associated with essential tremor (ET). However, some patients with this repeat expansion, initially diagnosed with ET, were eventually diagnosed with NIID. Therefore, controversy remains regarding the clinical diagnosis of these expansion-positive patients presenting with tremor-dominant symptoms. This study aimed to clarify the clinical phenotype in tremor-dominant patients who have the GGC repeat expansion in the NOTCH2NLC gene. METHODS: We screened for pathogenic GGC repeat expansions in 602 patients initially diagnosed with ET and systematically re-evaluated the clinical features of the expansion-positive probands and their family members. RESULTS: Pathogenic GGC repeat expansion in the NOTCH2NLC gene was detected in 10 probands (1.66%). Seven of these probands were re-evaluated and found to have systemic areflexia, cognitive impairment, and abnormal nerve conduction, which prompted a change of diagnosis from ET to NIID. Three of the probands had typical hyperintensity in the corticomedullary junction on diffusion-weighted imaging. Intranuclear inclusions were detected in all four probands who underwent skin biopsy. CONCLUSIONS: The NIID tremor-dominant subtype can be easily misdiagnosed as ET. We should take NIID into account for differential diagnosis of ET. Systemic areflexia could be an important clinical clue suggesting that cranial magnetic resonance imaging examination, or even further genetic testing and skin biopsy examination, should be used to confirm the diagnosis of NIID.


Asunto(s)
Temblor Esencial , Cuerpos de Inclusión Intranucleares , Temblor Esencial/diagnóstico , Temblor Esencial/genética , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/patología , Enfermedades Neurodegenerativas , Temblor/diagnóstico , Temblor/genética , Expansión de Repetición de Trinucleótido/genética
20.
Fish Shellfish Immunol ; 128: 188-195, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35870749

RESUMEN

Amyloodiniosis is a severe disease of marine and brackish water fish caused by Amyloodinium ocellatum. Golden pompano (Trachinotus ovatus) is often repeatedly infected by A. ocellatum, leading to extensive mortality. However, little is known about the immune response mechanisms of the T. ovatus following reinfection with A. ocellatum. In this study, an extensive analysis at the transcriptome level of T. ovatus skin was carried out at 24 h post-infection by A. ocellatum. During the transcriptomic analysis, 1367 differentially expressed genes (DEGs) in the skin of T. ovatus under A. ocellatum infection and control conditions were obtained. In Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotated analyses, the DEGs were significantly enriched in the immune-related pathways. To better understand the immune-related gene expression dynamics, a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the primary and secondary infection groups of T. ovatus at different stages (3 h, 12 h, 24 h, 48 h and, 72 h post-infection) of infection with A.ocellatum. The results showed that innate immunity-related genes [interleukin (IL-8), chemokine ligand 3 (CCL3), toll-like receptor 7 (TLR7), and G-type lysosome (LZM g)] and adaptive immunity-related gene [major histocompatibility complex (MHC) alpha antigen I and MHC alpha antigen II] expression levels in the primary and secondary infection groups were significantly increased compared to the control group. The expression of MHC I and MHC II was more rapidly upregulated in the secondary infection group compared with the primary infection group after A.ocellatum infection. However, no significant differences of A.ocellatum load were observed in primary and secondary infection groups. In addition, the serum of the primary infection group had significantly higher concentrations of triglyceride (TG), higher alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) activities than the control group. This study contributes to understanding the defense mechanisms in fish skin against ectoparasite infection.


Asunto(s)
Coinfección , Dinoflagelados , Enfermedades de los Peces , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces , Inmunidad Innata/genética , Interleucina-8/genética , Lactato Deshidrogenasas/genética , Lactato Deshidrogenasas/metabolismo , Ligandos , Receptor Toll-Like 7/genética , Transcriptoma , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA