Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163871

RESUMEN

BACKGROUND: Wheat is one of the main grain crops in the world, and the tiller number is a key factor affecting the yield of wheat. Phosphorus is an essential element for tiller development in wheat. However, due to decreasing phosphorus content in soil, there has been increasing use of phosphorus fertilizer, while imposing risk of soil and water pollution. Hence, it is important to identify low phosphorus tolerance genes and utilize them for stress resistance breeding in wheat. RESULTS: We subjected the wheat variety Kenong 199 (KN199) to low phosphorus stress and observed a reduced tiller number. Using transcriptome analysis, we identified 1651 upregulated genes and 827 downregulated of genes after low phosphorus stress. The differentially expressed genes were found to be enriched in the enzyme activity regulation related to phosphorus, hormone signal transduction, and ion transmembrane transport. Furthermore, the transcription factor analysis revealed that TaWRKY74s were important for low phosphorus tolerance. TaWRKY74s have three alleles: TaWRKY74-A, TaWRKY74-B, and TaWRKY74-D, and they all belong to the WRKY family with conserved WRKYGQK motifs. These proteins were found to be located in the nucleus, and they were expressed in axillary meristem, shoot apical meristem(SAM), young leaves, leaf primordium, and spikelet primordium. The evolutionary tree showed that TaWRKY74s were closely related to OsWRKY74s in rice. Moreover, TaWRKY74s-RNAi transgenic plants displayed significantly fewer tillers compared to wild-type plants under normal conditions. Additionally, the tiller numebr of the RNAi transgenic plants was also significantly lower than that of the wild-type plants under low-phosphorus stress, and increased the decrease amplitude. This suggestd that TaWRKY74s are related to phosphorus response and can affect the tiller number of wheat. CONCLUSIONS: The results of this research showed that TaWRKY74s were key genes in wheat response to low phosphorus stress, which might regulate wheat tiller number through abscisic acid (ABA) and auxin signal transduction pathways. This research lays the foundation for further investigating the mechanism of TaWRKY74s in the low phosphorus environments and is significant for wheat stress resistance breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fósforo/metabolismo , Suelo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Biotechnol J ; 18(2): 513-525, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350929

RESUMEN

Tillering is a significant agronomic trait in wheat which shapes plant architecture and yield. Strigolactones (SLs) function in inhibiting axillary bud outgrowth. The roles of SLs in the regulation of bud outgrowth have been described in model plant species, including rice and Arabidopsis. However, the role of SLs genes in wheat remains elusive due to the size and complexity of the wheat genomes. In this study, TaD27 genes in wheat, orthologs of rice D27 encoding an enzyme involved in SLs biosynthesis, were identified. TaD27-RNAi wheat plants had more tillers, and TaD27-B-OE wheat plants had fewer tillers. Germination bioassay of Orobanche confirmed the SLs was deficient in TaD27-RNAi and excessive in TaD27-B-OE wheat plants. Moreover, application of exogenous GR24 or TIS108 could mediate the axillary bud outgrowth of TaD27-RNAi and TaD27-B-OE in the hydroponic culture, suggesting that TaD27-B plays critical roles in regulating wheat tiller number by participating in SLs biosynthesis. Unlike rice D27, plant height was not affected in the transgenic wheat plants. Transcription and gene coexpression network analysis showed that a number of genes are involved in the SLs signalling pathway and axillary bud development. Our results indicate that TaD27-B is a key factor in the regulation of tiller number in wheat.


Asunto(s)
Proteínas de Plantas , Triticum , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Triticum/anatomía & histología , Triticum/genética
3.
Plant Signal Behav ; 16(12): 2018217, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968411

RESUMEN

Tiller number is an important agronomic trait that affects crop yield. The roles of OTUB1 in regulating tiller numbers in rice have been reported. However, the roles of OTUB1 in wheat remain elusive. In this study, TaOTUB1s were identified in wheat. TaOTUB1 proteins were localized in the nucleus and cytoplasm. Compared with wild-type Fielder, TaOTUB1-RNAi transgenic wheat plants had fewer tillers. Similar to OTUB1 in rice, the yeast double hybrid indicated that the TaOTUB1-A protein could interact with TaSPL17 and TaUBC13 proteins. The results of quantitative real-time polymerase chain reaction revealed that the expression levels of TaOTUB1s decreased while those of TaSPL17 significantly improved in TaOTUB1-RNAi lines. These findings suggested that TaOTUB1s influenced tiller number in wheat.


Asunto(s)
Oryza , Triticum , Oryza/genética , Fenotipo , Plantas Modificadas Genéticamente/genética , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA