Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(28): 8768-73, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124107

RESUMEN

Decline in mitochondrial morphology and function is a hallmark of neuronal aging. Here we report that progressive mitochondrial fragmentation is a common manifestation of aging Caenorhabditis elegans neurons and body wall muscles. We show that sensory-evoked activity was essential for maintaining neuronal mitochondrial morphology, and this activity-dependent mechanism required the Degenerin/ENaC sodium channel MEC-4, the L-type voltage-gated calcium channel EGL-19, and the Ca/calmodulin-dependent kinase II (CaMKII) UNC-43. Importantly, UNC-43 phosphorylated and inhibited the dynamin-related protein (DRP)-1, which was responsible for excessive mitochondrial fragmentation in neurons that lacked sensory-evoked activity. Moreover, enhanced activity in the aged neurons ameliorated mitochondrial fragmentation. These findings provide a detailed description of mitochondrial behavior in aging neurons and identify activity-dependent DRP-1 phosphorylation by CaMKII as a key mechanism in neuronal mitochondrial maintenance.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mitocondrias/fisiología , Neuronas/fisiología , Envejecimiento , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/fisiología , Longevidad , Neuronas/enzimología , Oxidación-Reducción
2.
Nat Commun ; 15(1): 3360, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637611

RESUMEN

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Ratones , Aprendizaje/fisiología , Mamíferos/metabolismo , Odorantes , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiología , Antígenos CD20/metabolismo
3.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617205

RESUMEN

Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.

4.
Res Sq ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37790559

RESUMEN

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.

5.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609248

RESUMEN

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.

6.
Nat Neurosci ; 25(4): 484-492, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314823

RESUMEN

The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.


Asunto(s)
Bulbo Olfatorio , Neuronas Receptoras Olfatorias , Animales , Mamíferos , Ratones , Odorantes , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato , Transcriptoma
7.
J Mol Signal ; 8(1): 14, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24325838

RESUMEN

The heterogeneity and multigenetic nature of nervous system aging make modeling of it a formidable task in mammalian species. The powerful genetics, simple anatomy and short life span of the nematode Caenorhabditis elegans offer unique advantages in unraveling the molecular genetic network that regulates the integrity of neuronal structures and functions during aging. In this review, we first summarize recent breakthroughs in the morphological and functional characterization of C. elegans neuronal aging. Age-associated morphological changes include age-dependent neurite branching, axon beading or swelling, axon defasciculation, progressive distortion of the neuronal soma, and early decline in presynaptic release function. We then discuss genetic pathways that modulate the speed of neuronal aging concordant with alteration in life span, such as insulin signaling, as well as cell-autonomous factors that promote neuronal integrity during senescence, including membrane activity and JNK/MAPK signaling. As a robust genetic model for aging, insights from C. elegans neuronal aging studies will contribute to our mechanistic understanding of human brain aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA