Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
J Am Chem Soc ; 146(14): 9768-9778, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38545837

RESUMEN

A rhodium-catalyzed 3-component conjunctive diastereo- and regioselective arylamidation of (homo)allylic sulfides, organon boronic acids, and dioxazolones is reported. These reactions deliver the 1,2-insertion and 2,1-insertion arylamidation products, respectively, for allylic sulfides and homoallylic sulfides. The enantioselective arylamidation of terminal and internal allylic sulfides is achieved, furnishing various 1,3-N,S compounds featuring one or two contiguous stereocenters in high yields and with high diastereo- and enantioselectivities. Mechanistic studies suggest a change in the turnover-limiting and selectivity-determining steps induced by the native and easily removable sulfide group.

2.
J Am Chem Soc ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512775

RESUMEN

Despite their significant importance to numerous fields, the difficulties in direct and diverse synthesis of α-hydroxy-γ-lactams pose substantial obstacles to their practical applications. Here, we designed a nitrogen and TiO2 co-doped graphitic carbon-supported material with atomically dispersed cobalt sites (CoSA-N/NC-TiO2), which was successfully applied as a multifunctional catalyst to establish a general method for direct construction of α-hydroxy-γ-lactams from cheap and abundant nitro(hetero)arenes, aldehydes, and H2O with alkynoates. The striking features of operational simplicity, broad substrate and functionality compatibility (>100 examples), high step and atom efficiency, good selectivity, and exceptional catalyst reusability highlight the practicality of this new catalytic transformation. Mechanistic studies reveal that the active CoN4 species and the dopants exhibit a synergistic effect on the formation of key acid-masked nitrones; their subsequent nucleophilic addition to the alkynoates followed by successive reduction, alkenyl hydration, and intramolecular ester ammonolysis delivers the desired products. In this work, the concept of reduction interruption leading to new reaction route will open a door to further develop useful transformations by rational catalyst design.

3.
J Org Chem ; 89(8): 5846-5850, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38584435

RESUMEN

The efficient synthesis of γ-thiapyrones by a base-mediated Diels-Alder/retro-Diels-Alder reaction of α-pyrones with 5-H-1,2,3-thiadiazoles is reported herein. Thioketenes in situ generated from thiadiazoles as electron-poor dienophile and electron-rich 4-hydroxy-2-pyrones as dienes are conjunctively transformed into a series of γ-thiapyrones with broad functional group compatibility in good to excellent yields (35 examples, 67% average yield).

4.
J Org Chem ; 89(10): 7280-7285, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38716567

RESUMEN

A practical and efficient method to access polysubstituted aryl sulfides has been discovered via a Lewis acid-catalyzed reaction between alkynyl sulfide and 2-pyrone, involving a Diels-Alder/retro-Diels-Alder pathway. Alkynyl sulfide as an electron-rich dienophile and 2-pyrones as electron-poor dienes are conjunctively transformed into a series of polysubstituted aryl sulfides with broad functional group compatibility in good to excellent yields (40 examples, 43-88% yield). The robustness and practicality of the protocol has been demonstrated through gram-scale synthesis and the ease of transformation of the resulting products.

5.
J Org Chem ; 89(6): 3684-3695, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394358

RESUMEN

A Rh(III)-catalyzed oxidative 1,3-aryl migration of α-arylallylic alcohols via Csp2-Csp3 σ bond activation has been developed. This method provides an efficient strategy to allow for allylic alcohol-based skeleton rearrangement, in which various secondary and tertiary α-arylallylic alcohols are rapidly converted to ß-aryl-α, ß-unsaturated ketones and aldehydes.

6.
J Org Chem ; 89(9): 6615-6625, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652857

RESUMEN

A palladium-catalyzed carbohalogenation of olefins with alkynyl oxime ethers has been described, which provides efficient and practical access to various chlorine-containing isoxazoles. This method exhibits excellent regioselectivity, good functional group compatibility, and mild reaction conditions. The mechanistic studies suggest that the reaction proceeds via a stabilized π-benzyl palladium intermediate, which is essential for the formation of C(sp3)-Cl bonds.

7.
Inorg Chem ; 63(21): 9854-9863, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38753036

RESUMEN

Heterogeneous palladium catalysts with high efficiency, high Pd atom utilization, simplified separation, and recycle have attracted considerable attention in the field of synthetic chemistry. Herein, we reported a zirconium-based two-dimensional metal-organic framework (2D-MOF)-based Pd(II) photocatalyst (Zr-Ir-Pd) by merging the Ir photosensitizers and Pd(II) species into the skeletons of the 2D-MOF for the Pd(II)-catalyzed oxidation reaction. Morphological and structural characterization identified that Zr-Ir-Pd with a specific nanoflower-like structure consists of ultrathin 2D-MOF nanosheets (3.85 nm). Due to its excellent visible-light response and absorption capability, faster transfer and separation of photogenerated carriers, more accessible Pd active sites, and low mass transfer resistance, Zr-Ir-Pd exhibited boosted photocatalytic activity in catalyzing sterically hindered isocyanide insertion of diarylalkynes for the construction of fused tetracyclic heterocycles, with up to 12 times the Pd catalyst turnover number than the existing catalytic systems. In addition, Zr-Ir-Pd inhibited the competitive agglomeration of Pd(0) species and could be reused at least five times, owing to the stabilization of 2D-MOF on the single-site Pd and Ir sites. Finally, a possible mechanism of the photocatalytic synthesis of fused tetracyclic heterocycles catalyzed by Zr-Ir-Pd was proposed.

8.
Angew Chem Int Ed Engl ; 63(3): e202316016, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38038685

RESUMEN

The first asymmetric total synthesis of the monoterpenoid indole alkaloid arboduridine has been accomplished. The tricyclic A/B/D ring system was constructed by an enantioselective Michael reaction followed by intramolecular nucleophilic addition. Intramolecular α-amination of a ketone forged the piperidine ring, while a Horner-Wadsworth-Emmons (HWE) reaction was used to form the pyrrolidine ring. A reduction cyclization cascade led to formation of the tetrahydrofuran ring.

9.
Angew Chem Int Ed Engl ; : e202407127, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818628

RESUMEN

A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-ß-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.

10.
Angew Chem Int Ed Engl ; : e202409332, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887822

RESUMEN

Described herein is a dirhodium(II)-catalyzed silylation of propargyl esters with hydrosilanes, using tertiary amines as axial ligands. By adopting this strategy, a range of versatile and useful allenylsilanes can be achieved with good yields. This reaction not only represents a SN2'-type silylation of the propargyl derivatives bearing a terminal alkyne moiety to synthesize allenylsilanes from simple hydrosilanes, but also represents a new application of dirhodium(II) complexes in catalytic transformation of carbon-carbon triple bond. The highly functionalized allenylsilanes that are produced can be transformed into a series of synthetically useful organic molecules. In this reaction, an intriguing ON-OFF effect of the amine ligand was observed. The reaction almost did not occur (OFF) without addition of Lewis base amine ligand. However, the reaction took place smoothly (ON) after addition of only catalytic amount of amine ligand. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that the reactivity can be delicately improved by the use of tertiary amine. The fine-tuning effect of the tertiary amine is crucial in the formation of the Rh-Si species via a concerted metalation deprotonation (CMD) mechanism and facilitating ß-oxygen elimination.

11.
J Am Chem Soc ; 145(31): 17329-17336, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37418675

RESUMEN

Despite the extensive applications, selective and diverse access to N,N'-diarylethane-1,2-diamines remains, to date, a challenge. Here, by developing a bifunctional cobalt single-atom catalyst (CoSA-N/NC), we present a general method for direct synthesis of such compounds via selective reductive coupling of cheap and abundant nitroarenes and formaldehyde, featuring good substrate and functionality compatibility, an easily accessible base metal catalyst with excellent reusability, and high step and atom efficiency. Mechanistic studies reveal that the N-anchored cobalt single atoms (CoN4) serve as the catalytically active sites for the reduction processes, the N-doped carbon support enriches the HCHO to timely trap the in situ formed hydroxyamines and affords the requisite nitrones under weak alkaline conditions, and the subsequent inverse electron demand 1,3-dipolar cycloaddition of the nitrones and imines followed by hydrodeoxygenation of the cycloadducts furnishes the products. In this work, the concept of catalyst-controlled nitroarene reduction to in situ create specific building blocks is anticipated to develop more useful chemical transformations.

12.
J Am Chem Soc ; 145(20): 10967-10973, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37075201

RESUMEN

Despite the widespread applications of α-hydroxyalkyl cyclic amines, direct and diverse access to such a class of unique vicinal amino alcohols still remains, to date, a challenge. Here, through a strategy of electroreductive α-hydroxyalkylation of inactive N-heteroarenes with ketones or electron-rich arylaldehydes, we describe a room temperature approach for the direct construction of α-hydroxyalkyl cyclic amines, which features a broad substrate scope, operational simplicity, high chemoselectivity, and no need for pressurized H2 gas and transition metal catalysts. The zinc ion generated from anode oxidation plays a crucial role in the activation of both reactants by decreasing their reduction potentials. The strategy of electroreduction in combination with substrate activation by Lewis acids in this work is anticipated to develop more useful transformations.

13.
J Am Chem Soc ; 145(17): 9448-9453, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37053042

RESUMEN

Direct coupling of unactivated olefins with primary alkylamines is considered to be an efficient but unknown method for the construction of complex amines. Herein we report a catalytic intermolecular oxidative amination of unactivated olefins with primary aliphatic amines based on the combination of a palladium catalyst, a bidentate phosphine ligand, and duroquinone. A range of secondary allylic amines were obtained in good yields with excellent regio- and stereoselectivity. Mechanistic control experiments revealed that the reaction proceeds by allylic C(sp3)-H activation and nucleophilic amination. The utility of the protocol is further demonstrated with the late-stage modification and streamlined synthesis of drug molecules.

14.
Chemistry ; 29(26): e202300068, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36797659

RESUMEN

Herein, the PdII -catalyzed construction of functionalized dihaloalkenynes from haloalkynes via a self-haloalkynylation reaction, without specialized ligands or oxidizing additives, is reported. The method tolerates a diverse range of haloalkynes, including electron-donating and electron-withdrawing functional groups, such as macrocyclic alkynols, spiro-oxy ring alkynols, and even carbazole-containing, pyrrolidine-2,5-dione-containing and silyl-protected bromoalkynes. Using an opposite lithium halide (LiX) to the haloalkyne starting material, remarkably high regio- and stereoselectivity of the haloalkynylation reaction is possible, yielding 1-bromo-2-chloroalkenyne or 2-bromo-1-chloroalkenyne products as desired.

15.
J Org Chem ; 88(8): 5231-5237, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36644860

RESUMEN

A palladium-catalyzed reductive formylation of aryl iodides with carbon dioxide as the carbonyl source under mild reaction conditions was realized by using a combination of Pd(PCy3)2Cl2 and di-2-pyridyl ketone as the catalyst and phenylsilane as the reductive reagent, leading to a variety of aromatic aldehydes in moderate to excellent yields. The protocol features wide substrate scope, good functional group tolerance, and simple operation.

16.
J Org Chem ; 88(8): 5205-5211, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36288555

RESUMEN

A palladium-catalyzed direct carbonylation of aryl bromides with carbon dioxide as the carbonyl source has been developed by using Pd(dba)2/DPEPhos as the catalyst under mild reaction conditions, providing an efficient route to a variety of aryl carboxylic acids in moderate to high yields. The methods have many advantages such as the use of a simple palladium catalyst system, wide substrate scope, good functional group tolerance, high yields, and easy scalability.

17.
Angew Chem Int Ed Engl ; 62(22): e202303007, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946861

RESUMEN

Due to the generation of multiple intermediates during the nitroarene reduction, precise interception of single one to develop tandem reactions involving both C-C and C-N bond formations still remains a significant challenge. Herein, the relay catalysis of a supported bifunctional cobalt catalyst with l-proline has been successfully applied to establish a bran-new reductive annulation reaction of nitroarenes and formaldehyde, which enables direct and diverse construction of both symmetrical and unsymmetrical 1,3-diaryl imidazolines. It proceeds with operational simplicity, good substrate and functionality compatibility, and excellent step and atom-efficiency. Mechanistic studies reveal that the Co-catalyst exhibits a synergistic effect on the formation of key N-hydroxy imine, and the l-proline subsequently facilitates the key C-C bond formation. The current work opens a door to develop useful transformations with nitroarenes by reduction-interrupted strategy.

18.
Chemistry ; 28(65): e202202528, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35984349

RESUMEN

Palladium-catalyzed enantioselective cyclization of enynes has contributed significantly to the construction of chiral cyclic molecules. In contrast, the catalytic asymmetric cyclization involving halopalladation remains an unresolved challenge with the inevitable disturbance of the halide ions. Herein, an intramolecular chlorine transfer strategy is used to accomplish the enantioselective chloropalladation cyclization of 1,6-enynes. This reaction provides a redox-neutral approach to a variety of chiral α-chloromethylene-γ-butyrolactones with excellent E selectivity and enantioselectivity. The precisely controlled coordination of palladium with both the in situ generated nucleophilic species and the monodentate phosphoramidite ligand is crucial for enantioselectivity.


Asunto(s)
Cloro , Paladio , Ciclización , Estereoisomerismo , Catálisis , Halógenos
19.
J Org Chem ; 87(12): 8223-8228, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35670781

RESUMEN

A formal synthesis of arboridinine has been achieved. In this synthesis, a double-Mannich reaction of the complex multisubstituted cyclohexanone was used to form the core skeleton of arboridinine.


Asunto(s)
Alcaloides Indólicos
20.
J Org Chem ; 87(19): 12816-12830, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36099344

RESUMEN

This report discloses a novel Pd-catalyzed sequential three-component multiple reaction of alkenes, bromoalkynes, and boronic acids using alkenes as hydride and alkenyl donors, leading to highly stereoselective assembly of (Z,E)-1,3-diene derivatives. Mechanistic studies demonstrate that the generation and reutilization of palladium hydride species are critical to the success of this transformation. In addition, the good functional group compatibility, late-stage modification, and investigation of photophysical properties of 1,3-diene products illustrate the synthetic value of this strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA