Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 686, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026194

RESUMEN

BACKGROUND: In plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. In soybean, leaf type traits, including leaf shape, leaf area, leaf width, and leaf width so on, are considered to be associated with yield. In this study, we performed morphological characterization, transcriptome analysis, and endogenous hormone analysis of a rolled and narrow leaf mutant line (rl) in soybean. RESULTS: Compared with wild type HX3, mutant line rl showed rolled and narrower leaflet, and smaller leaf, meanwhile rl also performed narrower pod and narrower seed. Anatomical analysis of leaflet demonstrated that cell area of upper epidermis was bigger than the cell area of lower epidermis in rl, which may lead rolled and narrow leaf. Transcriptome analysis revealed that several cytokinin oxidase/dehydrogenase (CKX) genes (Glyma.06G028900, Glyma.09G225400, Glyma.13G104700, Glyma.14G099000, and Glyma.17G054500) were up-regulation dramatically, which may cause lower cytokinin level in rl. Endogenous hormone analysis verified that cytokinin content of rl was lower. Hormone treatment results indicated that 6-BA rescued rolled leaf enough, rescued partly narrow leaf. And after 6-BA treatment, the cell area was similar between upper epidermis and lower epidermis in rl. Although IAA content and ABA content were reduced in rl, but exogenous IAA and ABA didn't affect leaf type of HX3 and rl. CONCLUSIONS: Our results suggest abnormal cytokinin metabolism caused rolled and narrow leaf in rl, and provide valuable clues for further understanding the mechanisms underlying leaf development in soybean.


Asunto(s)
Perfilación de la Expresión Génica , Glycine max , Hojas de la Planta , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/anatomía & histología , Glycine max/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Transcriptoma , Mutación , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Citocininas/metabolismo , Fenotipo
2.
Front Plant Sci ; 15: 1369650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628361

RESUMEN

Powdery mildew disease (PMD) is caused by the obligate biotrophic fungus Microsphaera diffusa Cooke & Peck (M. diffusa) and results in significant yield losses in soybean (Glycine max (L.) Merr.) crops. By identifying disease-resistant genes and breeding soybean accessions with enhanced resistance, we can effectively mitigate the detrimental impact of PMD on soybeans. We analyzed PMD resistance in a diversity panel of 315 soybean accessions in two locations over 3 years, and candidate genes associated with PMD resistance were identified through genome-wide association studies (GWAS), haplotype analysis, qRT-PCR, and EMS mutant analysis. Based on the GWAS approach, we identified a region on chromosome 16 (Chr16) in which 21 genes form a gene cluster that is highly correlated with PMD resistance. In order to validate and refine these findings, we conducted haplotype analysis of 21 candidate genes and indicated there are single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) variations of Glyma.16G214000, Glyma.16G214200, Glyma.16G215100 and Glyma.16G215300 within the coding and promoter regions that exhibit a strong association with resistance against PMD. Subsequent structural analysis of candidate genes within this cluster revealed that in 315 accessions, the majority of accessions exhibited resistance to PMD when Glyma.16G214300, Glyma.16G214800 and Glyma.16G215000 were complete; however, they demonstrated susceptibility to PMD when these genes were incomplete. Quantitative real-time PCR assays (qRT-PCR) of possible candidate genes showed that 14 candidate genes (Glyma.16G213700, Glyma.16G213800, Glyma.16G213900, Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214500, Glyma.16G214585, Glyma.16G214669, Glyma.16G214700, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300) were involved in PMD resistance. Finally, we evaluated the PMD resistance of mutant lines from the Williams 82 EMS mutations library, which revealed that mutants of Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300, exhibited sensitivity to PMD. Combined with the analysis results of GWAS, haplotypes, qRT-PCR and mutants, the genes Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300 were identified as highly correlated with PMD resistance. The candidate genes identified above are all NLR family genes, and these discoveries deepen our understanding of the molecular basis of PMD resistance in soybeans and will be useful for guiding breeding strategies.

3.
Plants (Basel) ; 11(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684171

RESUMEN

Histone modifications, such as methylation and demethylation, have crucial roles in regulating chromatin structure and gene expression. Lysine-specific histone demethylases (LSDs) belong to the amine oxidase family, which is an important family of histone lysine demethylases (KDMs), and functions in maintaining homeostasis of histone methylation. Here, we identified six LSD-like (LDL) genes from the important leguminous soybean. Phylogenetic analyses divided the six GmLDLs into four clusters with two highly conserved SWRIM and amine oxidase domains. Indeed, demethylase activity assay using recombinant GmLDL proteins in vitro demonstrated that GmLDLs have demethylase activity toward mono- and dimethylated Lys4 but not trimethylated histone 3, similar to their orthologs previously reported in animals. Using real-time PCR experiments in combination with public transcriptome data, we found that these six GmLDL genes exhibit comparable expressions in multiple tissues or in response to different abiotic stresses. Moreover, our genetic variation investigation of GmLDL genes among 761 resequenced soybean accessions indicates that GmLDLs are well conserved during soybean domestication and improvement. Taken together, these findings demonstrate that GmFLD, GmLDL1a, and GmLDL1b are bona fide H3K4 demethylases towards H4K4me1/2 and GmLDLs exist in various members with likely conserved and divergent roles in soybeans.

4.
Sci China Life Sci ; 64(2): 179-195, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33230598

RESUMEN

Soybean, a typical short-day crop, is sensitive to photoperiod, which is a major limiting factor defining its north-to-south cultivation range. The long-juvenile (LJ) trait is controlled primarily by the J locus which has been used for decades by soybean breeders to delay flowering and improve grain yield in tropical regions. The J gene encodes an ortholog of the Arabidopsis Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). To identify modifiers of J, we conducted a forward genetic screen and isolated a mutant (eoj57) that in combination with j has longer flowering delay compared with j single mutant plants. Map-based cloning and genome re-sequencing identified eoj57 (designated as GmLUX2) as an ortholog of the Arabidopsis EC component LUX ARRHYTHMO (LUX). To validate that GmLUX2 is a modifier of J, we used trans-complementation and identified a natural variant allele with a similar phenotype. We also show that GmLUX2 physically interacts with GmELF3a/b and binds DNA, whereas the mutant and natural variant are attenuated in both activities. Transcriptome analysis shows that the GmLUX2-GmELF3a complex co-regulates the expression of several circadian clock-associated genes and directly represses E1 expression. These results provide mechanistic insight into how GmLUX2-GmELF3 controls flowering time via synergistic regulation of gene expression. These novel insights expand our understanding of the regulation of the EC complex, and facilitate the development of soybean varieties adapted for growth at lower latitudes.


Asunto(s)
Adaptación Fisiológica/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Glycine max/genética , Fotoperiodo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Perfilación de la Expresión Génica/métodos , Prueba de Complementación Genética , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Glycine max/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA