RESUMEN
Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.
Asunto(s)
Cistina , Protones , Sistemas de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Humanos , Lisosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.
Asunto(s)
ADN/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Tetrahymena thermophila/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , ADN/química , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Complejo Shelterina , Fosfatasa Ácida Tartratorresistente/metabolismo , Telomerasa/química , Telómero/química , Proteínas de Unión a Telómeros , Tetrahymena thermophila/enzimologíaRESUMEN
The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.
Asunto(s)
Activación del Canal Iónico , Mutación , Canales de Potasio Shab , Animales , Humanos , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico/genética , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo , Canales de Potasio Shab/ultraestructura , Espasmos Infantiles/genéticaRESUMEN
DNA-dependent protein kinase (DNA-PK), like all phosphatidylinositol 3-kinase-related kinases (PIKKs), is composed of conserved FAT and kinase domains (FATKINs) along with solenoid structures made of HEAT repeats. These kinases are activated in response to cellular stress signals, but the mechanisms governing activation and regulation remain unresolved. For DNA-PK, all existing structures represent inactive states with resolution limited to 4.3 Å at best. Here, we report the cryoelectron microscopy (cryo-EM) structures of DNA-PKcs (DNA-PK catalytic subunit) bound to a DNA end or complexed with Ku70/80 and DNA in both inactive and activated forms at resolutions of 3.7 Å overall and 3.2 Å for FATKINs. These structures reveal the sequential transition of DNA-PK from inactive to activated forms. Most notably, activation of the kinase involves previously unknown stretching and twisting within individual solenoid segments and loosens DNA-end binding. This unprecedented structural plasticity of helical repeats may be a general regulatory mechanism of HEAT-repeat proteins.
Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/química , Autoantígeno Ku/química , Complejos Multiproteicos/química , Microscopía por Crioelectrón , Proteína Quinasa Activada por ADN/genética , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructuraRESUMEN
The generation of α-synuclein (α-syn) truncations from incomplete proteolysis plays a significant role in the pathogenesis of Parkinson's disease. It is well established that C-terminal truncations exhibit accelerated aggregation and serve as potent seeds in fibril propagation. In contrast, mechanistic understanding of N-terminal truncations remains ill defined. Previously, we found that disease-related C-terminal truncations resulted in increased fibrillar twist, accompanied by modest conformational changes in a more compact core, suggesting that the N-terminal region could be dictating fibril structure. Here, we examined three N-terminal truncations, in which deletions of 13-, 35-, and 40-residues in the N terminus modulated both aggregation kinetics and fibril morphologies. Cross-seeding experiments showed that out of the three variants, only ΔN13-α-syn (14â140) fibrils were capable of accelerating full-length fibril formation, albeit slower than self-seeding. Interestingly, the reversed cross-seeding reactions with full-length seeds efficiently promoted all but ΔN40-α-syn (41-140). This behavior can be explained by the unique fibril structure that is adopted by 41-140 with two asymmetric protofilaments, which was determined by cryogenic electron microscopy. One protofilament resembles the previously characterized bent ß-arch kernel, comprised of residues E46âK96, whereas in the other protofilament, fewer residues (E61âD98) are found, adopting an extended ß-hairpin conformation that does not resemble other reported structures. An interfilament interface exists between residues K60âF94 and Q62âI88 with an intermolecular salt bridge between K80 and E83. Together, these results demonstrate a vital role for the N-terminal residues in α-syn fibril formation and structure, offering insights into the interplay of α-syn and its truncations.
Asunto(s)
Amiloide/biosíntesis , alfa-Sinucleína/fisiología , Acetilación , Amiloide/ultraestructura , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular , Humanos , Proteolisis , alfa-Sinucleína/químicaRESUMEN
Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.
Asunto(s)
Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/ultraestructura , Bacillus anthracis/química , Bacillus anthracis/ultraestructura , Toxinas Bacterianas/metabolismo , Microscopía por Crioelectrón , Antígenos Bacterianos/química , Toxinas Bacterianas/química , Biocatálisis , Concentración de Iones de Hidrógeno , Canales Iónicos/química , Canales Iónicos/metabolismo , Canales Iónicos/ultraestructura , Modelos Moleculares , Fenilalanina/metabolismo , Conformación Proteica , Transporte de Proteínas , Relación Estructura-ActividadRESUMEN
Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studied the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. These data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Fusión de Membrana , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/virología , Epítopos , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/patogenicidad , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/inmunología , Chaperonas Moleculares/química , Chaperonas Moleculares/inmunología , Unión Proteica , Conformación Proteica , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/química , Proteínas Virales/inmunología , Internalización del VirusRESUMEN
Telomerase adds telomeric repeats to chromosome ends using an internal RNA template and a specialized telomerase reverse transcriptase (TERT), thereby maintaining genome integrity. Little is known about the physical relationships among protein and RNA subunits within a biologically functional holoenzyme. Here we describe the architecture of Tetrahymena thermophila telomerase holoenzyme determined by electron microscopy. Six of the seven proteins and the TERT-binding regions of telomerase RNA (TER) have been localized by affinity labelling. Fitting with high-resolution structures reveals the organization of TERT, TER and p65 in the ribonucleoprotein (RNP) catalytic core. p50 has an unanticipated role as a hub between the RNP catalytic core, p75-p19-p45 subcomplex, and the DNA-binding Teb1. A complete in vitro holoenzyme reconstitution assigns function to these interactions in processive telomeric repeat synthesis. These studies provide the first view of the extensive network of subunit associations necessary for telomerase holoenzyme assembly and physiological function.
Asunto(s)
Telomerasa/química , Telomerasa/ultraestructura , Tetrahymena thermophila/enzimología , Dominio Catalítico , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Conformación de Ácido Nucleico , Docilidad , Estructura Terciaria de Proteína , Subunidades de Proteína/análisis , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura , ARN/química , ARN/metabolismo , ARN/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Telomerasa/genética , Telomerasa/metabolismo , Tetrahymena thermophila/química , Tetrahymena thermophila/genética , Tetrahymena thermophila/ultraestructuraRESUMEN
Pyruvate dehydrogenase complex (PDC) is a large multienzyme complex that catalyzes the irreversible conversion of pyruvate to acetyl-coenzyme A with reduction of NAD+. Distinctive from PDCs in lower forms of life, in mammalian PDC, dihydrolipoyl acetyltransferase (E2; E2p in PDC) and dihydrolipoamide dehydrogenase binding protein (E3BP) combine to form a complex that plays a central role in the organization, regulation, and integration of catalytic reactions of PDC. However, the atomic structure and organization of the mammalian E2p/E3BP heterocomplex are unknown. Here, we report the structure of the recombinant dodecahedral core formed by the C-terminal inner-core/catalytic (IC) domain of human E2p determined at 3.1 Å resolution by cryo electron microscopy (cryoEM). The structure of the N-terminal fragment and four other surface areas of the human E2p IC domain exhibit significant differences from those of the other E2 crystal structures, which may have implications for the integration of E3BP in mammals. This structure also allowed us to obtain a homology model for the highly homologous IC domain of E3BP. Analysis of the interactions of human E2p or E3BP with their adjacent IC domains in the dodecahedron provides new insights into the organization of the E2p/E3BP heterocomplex and suggests a potential contribution by E3BP to catalysis in mammalian PDC.
Asunto(s)
Dihidrolipoamida Deshidrogenasa/química , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/química , Piruvato Deshidrogenasa (Lipoamida)/química , Complejo Piruvato Deshidrogenasa/química , Secuencia de Aminoácidos/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Catálisis , Dominio Catalítico/genética , Microscopía por Crioelectrón , Dihidrolipoamida Deshidrogenasa/genética , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/genética , Humanos , Conformación Proteica , Piruvato Deshidrogenasa (Lipoamida)/genética , Complejo Piruvato Deshidrogenasa/genéticaRESUMEN
Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits--the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles.
Asunto(s)
Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Sinaptotagminas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Proteínas de la Membrana/química , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Unión ProteicaRESUMEN
Inside the virions of α-herpesviruses, tegument protein pUL25 anchors the tegument to capsid vertices through direct interactions with tegument proteins pUL17 and pUL36. In addition to promoting virion assembly, both pUL25 and pUL36 are critical for intracellular microtubule-dependent capsid transport. Despite these essential roles during infection, the stoichiometry and precise organization of pUL25 and pUL36 on the capsid surface remain controversial due to the insufficient resolution of existing reconstructions from cryo-electron microscopy (cryoEM). Here, we report a three-dimensional (3D) icosahedral reconstruction of pseudorabies virus (PRV), a varicellovirus of the α-herpesvirinae subfamily, obtained by electron-counting cryoEM at 4.9 Å resolution. Our reconstruction resolves a dimer of pUL25 forming a capsid-associated tegument complex with pUL36 and pUL17 through a coiled coil helix bundle, thus correcting previous misinterpretations. A comparison between reconstructions of PRV and the γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) reinforces their similar architectures and establishes important subfamily differences in the capsid-tegument interface.
Asunto(s)
Herpesvirus Suido 1/química , Herpesvirus Suido 1/ultraestructura , Multimerización de Proteína , Proteínas Estructurales Virales/análisis , Proteínas Estructurales Virales/ultraestructura , Virión/química , Virión/ultraestructura , Microscopía por Crioelectrón , Imagenología Tridimensional , Unión ProteicaRESUMEN
Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.
Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Parásitos/fisiología , Internalización del Virus , Animales , Células CHO , Cricetinae , Cricetulus , Antígenos HLA-DQ/metabolismo , Procesamiento de Imagen Asistido por Computador , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica , Chaperonas Moleculares/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismoRESUMEN
Boron, essential for plant growth, necessitates precise regulation due to its potential toxicity. This regulation is achieved by borate transporters (BORs), which are homologous to the SLC4 family. The Arabidopsis thaliana Bor1 (AtBor1) transporter from clade I undergoes slow regulation through degradation and translational suppression, but its potential for fast regulation via direct activity modulation was unclear. Here, we combine cryo-electron microscopy, mutagenesis, and functional characterization to study AtBor1, revealing high-resolution structures of the dimer in one inactive and three active states. Our findings show that AtBor1 is regulated by two distinct mechanisms: an autoinhibitory domain at the carboxyl terminus obstructs the substrate pathway via conserved salt bridges, and phosphorylation of Thr410 allows interaction with a positively charged pocket at the cytosolic face, essential for borate transport. These results elucidate the molecular basis of AtBor1's activity regulation and highlight its role in fast boron level regulation in plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Boro , Microscopía por Crioelectrón , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Boro/metabolismo , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética , Transporte Biológico , Modelos Moleculares , Boratos/metabolismo , Boratos/química , AntiportadoresRESUMEN
Organic anion transporters (OATs) of the SLC22 family have crucial roles in the transport of organic anions, including metabolites and therapeutic drugs, and in transporter-mediated drug-drug interactions. In the kidneys, OATs facilitate the elimination of metabolic waste products and xenobiotics. However, their transport activities can lead to the accumulation of certain toxic compounds within cells, causing kidney damage. Moreover, OATs are important drug targets, because their inhibition modulates the elimination or retention of substrates linked to diseases. Despite extensive research on OATs, the molecular basis of their substrate and inhibitor binding remains poorly understood. Here we report the cryo-EM structures of rat OAT1 (also known as SLC22A6) and its complexes with para-aminohippuric acid and probenecid at 2.1, 2.8 and 2.9 Å resolution, respectively. Our findings reveal a highly conserved substrate binding mechanism for SLC22 transporters, wherein four aromatic residues form a cage to accommodate the polyspecific binding of diverse compounds.
Asunto(s)
Proteína 1 de Transporte de Anión Orgánico , Transportadores de Anión Orgánico , Ratas , Animales , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Microscopía por Crioelectrón , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Riñón/metabolismoRESUMEN
The dually lipidated Sonic hedgehog (SHH) morphogen signals through the tumor suppressor membrane protein Patched1 (PTCH1) to activate the Hedgehog pathway, which is fundamental in development and cancer. SHH engagement with PTCH1 requires the GAS1 coreceptor, but the mechanism is unknown. We demonstrate a unique role for GAS1, catalyzing SHH-PTCH1 complex assembly in vertebrate cells by direct SHH transfer from the extracellular SCUBE2 carrier to PTCH1. Structure of the GAS1-SHH-PTCH1 transition state identifies how GAS1 recognizes the SHH palmitate and cholesterol modifications in modular fashion and how it facilitates lipid-dependent SHH handoff to PTCH1. Structure-guided experiments elucidate SHH movement from SCUBE2 to PTCH1, explain disease mutations, and demonstrate that SHH-induced PTCH1 dimerization causes its internalization from the cell surface. These results define how the signaling-competent SHH-PTCH1 complex assembles, the key step triggering the Hedgehog pathway, and provide a paradigm for understanding morphogen reception and its regulation.
Asunto(s)
Proteínas Hedgehog , Receptor Patched-1 , Transducción de Señal , Catálisis , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Relación Estructura-ActividadRESUMEN
Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations. Remarkably, both IF-IF homodimers and IF-OF heterodimers were detected. The IF structures feature downward movement in the core domain with significant unexpected elongation of TM11. Molecular modeling and structure guided mutagenesis confirmed the functional significance of residues involved in TM11 elongation. Our data provide direct evidence for an elevator-like mechanism of ion transport by an SLC4 family member.
Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Proteínas de Transporte de Membrana , Bovinos , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía por Crioelectrón , Dominios Proteicos , Transporte IónicoRESUMEN
Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.
RESUMEN
Cells use molecular chaperones and proteases to implement the essential quality control mechanism of proteins. The DegP (HtrA) protein, essential for the survival of Escherichia coli cells at elevated temperatures with homologues found in almost all organisms uniquely has both functions. Here we report a mechanism for DegP to activate both functions via formation of large cage-like 12- and 24-mers after binding to substrate proteins. Cryo-electron microscopic and biochemical studies revealed that both oligomers are consistently assembled by blocks of DegP trimers, via pairwise PDZ1-PDZ2 interactions between neighboring trimers. Such interactions simultaneously eliminate the inhibitory effects of the PDZ2 domain. Additionally, both DegP oligomers were also observed in extracts of E. coli cells, strongly implicating their physiological importance.
Asunto(s)
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/metabolismo , Activación Enzimática , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestructura , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/ultraestructura , Unión Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/clasificación , Serina Endopeptidasas/genética , Serina Endopeptidasas/ultraestructura , Especificidad por SustratoRESUMEN
In this issue of Structure, Zhou et al. report the structures of full-length lethal and edema factors, the cytotoxic components of the deadly anthrax toxin, in complex with the toxin's cell binding and delivery module, the protective antigen prechannel, providing an atomic description for the toxin recruitment prior to translocation.
Asunto(s)
Carbunco , Toxinas Bacterianas , Antígenos Bacterianos , Microscopía por Crioelectrón , Edema , HumanosRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.