Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; : e2402040, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829027

RESUMEN

The extracellular matrix (ECM) engages in regulatory interactions with cell surface receptors through its constituent proteins and polysaccharides. Therefore, nano-sized extracellular matrix conjugated with doxorubicin (DOX) is utilized to produce extracellular matrix-drug conjugates (ECM-DOX) tailored for targeted delivery to cancer cells. The ECM-DOX nanoparticles exhibit rod-like morphology, boasting a commendable drug loading capacity of 4.58%, coupled with acid-sensitive drug release characteristics. Notably, ECM-DOX nanoparticles enhance the uptake by tumor cells and possess the ability to penetrate endothelial cells and infiltrate tumor multicellular spheroids. Mechanistic insights reveal that the internalization of ECM-DOX nanoparticle is facilitated through clathrin-mediated endocytosis and macropinocytosis, intricately involving hyaluronic acid receptors and integrins. Pharmacokinetic assessments unveil a prolonged blood half-life of ECM-DOX nanoparticles at 3.65 h, a substantial improvement over the 1.09 h observed for free DOX. A sustained accumulation effect of ECM-DOX nanoparticles at tumor sites, with drug levels in tumor tissues surpassing those of free DOX by several-fold. The profound therapeutic impact of ECM-DOX nanoparticles is evident in their notable inhibition of tumor growth, extension of median survival time in animals, and significant reduction in DOX-induced cardiotoxicity. The ECM platform emerges as a promising carrier for avant-garde nanomedicines in the realm of cancer treatment.

2.
Appl Environ Microbiol ; 89(10): e0080223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800922

RESUMEN

In a previous study, the novel gene cluster cehGHI was found to be involved in salicylate degradation through the CoA-mediated pathway in Rhizobium sp. strain X9 (Mol Microbiol 116:783-793, 2021). In this study, an IclR family transcriptional regulator CehR4 was identified. In contrast to other regulators involved in salicylate degradation, cehR4 forms one operon with the gentisyl-CoA thioesterase gene cehI, while cehG and cehH (encoding salicylyl-CoA ligase and salicylyl-CoA hydroxylase, respectively) form another operon. cehGH and cehIR4 are divergently transcribed, and their promoters overlap. The results of the electrophoretic mobility shift assay and DNase I footprinting showed that CehR4 binds to the 42-bp motif between genes cehH and cehI, thus regulating transcription of cehGH and cehIR4. The repeat sequences IR1 (5'-TTTATATAAA-3') and IR2 (5'-AATATAGAAA-3') in the motif are key sites for CehR4 binding. The arrangement of cehGH and cehIR4 and the conserved binding motif of CehR4 were also found in other bacterial genera. The results disclose the regulatory mechanism of salicylate degradation through the CoA pathway and expand knowledge about the systems controlled by IclR family transcriptional regulators.IMPORTANCEThe long-term residue of aromatic compounds in the environment has brought great threat to the environment and human health. Microbial degradation plays an important role in the elimination of aromatic compounds in the environment. Salicylate is a common intermediate metabolite in the degradation of various aromatic compounds. Recently, Rhizobium sp. strain X9, capable of degrading the pesticide carbaryl, was isolated from carbaryl-contaminated soil. Salicylate is the intermediate metabolite that appeared during the degradation of carbaryl, and a novel salicylate degradation pathway and the involved gene cluster cehGHIR4 have been identified. This study identified and characterized the IclR transcription regulator CehR4 that represses transcription of cehGHIR4 gene cluster. Additionally, the genetic arrangements of cehGH and cehIR4 and the binding sites of CehR4 were also found in other bacterial genera. This study provides insights into the biodegradation of salicylate and provides an application in the bioremediation of aromatic compound-contaminated environments.


Asunto(s)
Rhizobium , Salicilatos , Humanos , Salicilatos/metabolismo , Carbaril , Proteínas Bacterianas/metabolismo , Familia de Multigenes , Rhizobium/genética , Rhizobium/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
J Med Virol ; 95(1): e28411, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524893

RESUMEN

A series of nonpharmaceutical interventions (NPIs) was launched in Beijing, China, on January 24, 2020, to control coronavirus disease 2019. To reveal the roles of NPIs on the respiratory syncytial virus (RSV), respiratory specimens collected from children with acute respiratory tract infection between July 2017 and Dec 2021 in Beijing were screened by capillary electrophoresis-based multiplex PCR (CEMP) assay. Specimens positive for RSV were subjected to a polymerase chain reaction (PCR) and genotyped by G gene sequencing and phylogenetic analysis using iqtree v1.6.12. The parallel and fixed (paraFix) mutations were analyzed with the R package sitePath. Clinical data were compared using SPSS 22.0 software. Before NPIs launched, each RSV endemic season started from October/November to February/March of the next year in Beijing. After that, the RSV positive rate abruptly dropped from 31.93% in January to 4.39% in February 2020; then, a dormant state with RSV positive rates ≤1% from March to September, a nearly dormant state in October (2.85%) and November (2.98%) and a delayed endemic season in 2020, and abnormal RSV positive rates remaining at approximately 10% in summer until September 2021 were detected. Finally, an endemic RSV season returned in October 2021. There was a game between Subtypes A and B, and RSV-A replaced RSV-B in July 2021 to become the dominant subtype. Six RSV-A and eight RSV-B paraFix mutations were identified on G. The percentage of severe pneumonia patients decreased to 40.51% after NPIs launched. NPIs launched in Beijing seriously interfered with the endemic season of RSV.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Beijing/epidemiología , Filogenia , COVID-19/epidemiología , COVID-19/prevención & control , Virus Sincitial Respiratorio Humano/genética , Reacción en Cadena de la Polimerasa Multiplex
4.
Environ Microbiol ; 24(10): 4803-4817, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35880585

RESUMEN

Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbour the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 µM-1  min-1 ) was 200 times more than that of CbmA (0.032-0.21 µM-1  min-1 ). The mheI gene (plasmid encoded) was highly conserved (>99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.


Asunto(s)
Hidrolasas , Rhodococcus , Amidohidrolasas/metabolismo , Bencimidazoles , Carbamatos/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
5.
Appl Environ Microbiol ; 88(4): e0206021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936841

RESUMEN

Previously, a LysR family transcriptional regulator, McbG, that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 was identified by us (Z. Ke, Y. Zhou, W. Jiang, M. Zhang, et al., Appl Environ Microbiol 87:e02970-20, 2021, https://doi.org/10.1128/AEM.02970-20). In this study, we identified McbH and McbN, which activate the mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and the mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to the mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of the LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study revealed the regulatory mechanisms for the midstream and downstream pathways of carbaryl degradation in strain XWY-1 and further our knowledge of (and the size of) the LysR transcription regulator family. IMPORTANCE The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM, and mcbOPQ. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed and that the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster (responsible for the degradation of salicylate to gentisate) and the mcbOPQ cluster (responsible for the degradation of gentisate to pyruvate and fumarate), respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LysR-type transcriptional regulator (LTTR) binding sequence affects the binding of McbN to the promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


Asunto(s)
Carbaril , Pseudomonas , Proteínas Bacterianas/metabolismo , Carbaril/metabolismo , Regulación Bacteriana de la Expresión Génica , Gentisatos/metabolismo , Operón , Pseudomonas/genética , Pseudomonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Mol Biol Rep ; 49(4): 2723-2733, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35037196

RESUMEN

BACKGROUND: Mesenchymal stem cells have been widely used in the treatment of diabetes mellitus. However, hyperglycemia associated with DM promotes cell apoptosis and affects osteogenic differentiation of MSCs in varying degrees, leading to osteoporosis in DM patients. Therefore, in this paper, the effect of high glucose on apoptosis and osteogenesis of MSCs was investigated and underlying mechanism was further determined. METHODS AND RESULTS: Intracellular ROS levels were determined using probe DCFH-DA. MMP was detected using JC-1 staining. Cell apoptosis was detected using Annexin V-FITC/PI and Flow Cytometer. The expression of genes and protein was detected by qRT-PCR and Western blot respectively. The results showed high glucose induced MSC apoptosis but promoted its osteogenesis. Western blot analysis revealed that high glucose downregulated AKT-Sirt1-TWIST pathway. Activation of Sirt1 via SRT1720 increased TWIST expression, alleviated MSC apoptosis and promoted osteogenesis of MSCs. TWIST knockdown studies demonstrated that inhibition of TWIST intensified high glucose-induced apoptosis but promoted osteogenesis differentiation of MSCs. TWIST is likely to be a new regulator for cross talk between Sirt1 and its downstream targets. CONCLUSION: Our data demonstrates that high glucose induces MSC apoptosis and enhances osteogenesis differentiation via downregulation of AKT-Sirt1-TWIST.


Asunto(s)
Osteogénesis , Sirtuina 1 , Apoptosis , Diferenciación Celular , Regulación hacia Abajo , Glucosa/farmacología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
7.
Environ Res ; 208: 112706, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35031339

RESUMEN

Dimethachlon, a broad-spectrum dicarboximide fungicide, poses a hazard to the safety of human and ecosystem due to its residue in the environment. A high-efficient dimethachlon degrading bacteria JH-1 belonging to Paenarthrobacter sp. was isolated and characterized. Strain JH-1 can utilize high concentration of dimethachlon as sole carbon source for growth and degrade 98.53% of 300 mg·L-1 dimethachlon within 72 h. Crude enzyme of strain JH-1 could degrade 99.76% of 100 mg·L-1 dimethachlon within 2 h. The optimum degradation condition of dimethachlon by strain JH-1 was at 35 °C and pH 7.0. Dimethachlon was degraded in Paenarthrobacter sp. JH-1 as following: it was firstly converted to 4-(3,5-dichloroanilino)-4-oxobutanoic acid and then subjected to the hydrolysis to 3,5-dichloroaniline and succinic acid, the latter was further degraded. Dimethachlon inhibited the growth of Chlorella ellipsoidea, while Paenarthrobacter sp. JH-1 could degrade dimethachlon to relieve its toxicity. This work facilitates our knowledge of the degradation mechanism of dimethachlon and offers potential resource of microbial strains for the bioremediation of dimethachlon-contaminated environments in the future.


Asunto(s)
Chlorella , Bacterias , Biodegradación Ambiental , Clorobencenos , Ecosistema , Humanos , Succinimidas
8.
Biotechnol Appl Biochem ; 69(5): 2138-2150, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34694656

RESUMEN

The absence of blood vessels in tissue engineered bone often leads to necrosis of internal cells after implantation, ultimately affecting the process of bone repair. Herein, mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to induce osteogenesis and angiogenesis. Based on the findings, the number of HUVECs in the coculture system increased in the growth medium group, but decreased in the osteogenic induction medium (OIM) group. Considering that the paracrine effects of MSCs had changed, we tested the genes expression of osteogenically differentiated MSCs. The expression of osteogenic genes in MSCs increased during osteogenesis. Further, the expression levels of pigment epithelial-derived factor (PEDF) gene and protein, an antivascular factor, were also increased. To verify whether MSCs promote HUVECs apoptosis via PEDF, PEDF was silenced via siRNA. The conditioned medium of differentiated MSCs with PEDF silencing significantly improved the proliferation and apoptosis of HUVECs. Based on further experiments, PEDF mediated the apoptosis and proliferation of HUVECs through p53, BAX/BCL-2, FAS, and c-Caspase-3. However, when PEDF was silenced with siRNA, the osteogenic potential of MSCs was affected. The results of this study provide a theoretical basis for the construction of prevascularized bone tissues in vitro.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Endoteliales de la Vena Umbilical Humana , ARN Interferente Pequeño/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Técnicas de Cocultivo , Apoptosis , Células Cultivadas , Neovascularización Fisiológica
9.
Environ Microbiol ; 23(6): 3265-3273, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33939873

RESUMEN

Pymetrozine is a synthetic pesticide that can be utilized as the sole carbon source by Pseudomonas sp. strain BYT-1. However, the genes involved in the degradation of pymetrozine remain unknown. We used transposon mutagenesis to create a mutant that unable to hydrolyze pymetrozine. The transposon interrupted the gene pyzH, which was cloned by self-formed adaptor PCR. PyzH hydrolyzed the C=N double bond of pymetrozine to produce 4-amino-6-methyl-4,5-dihydro-2H-[1,2,4]triazin-3-one (AMDT) and nicotinaldehyde; the latter inhibits PyzH activity. PyzH can completely hydrolyze pymetrozine in the presence of dehydrogenase ORF6, which can convert nicotinaldehyde into nicotinic acid and relieve the inhibition. H2 18 O-labeling experiments showed that the oxygen atom of nicotinaldehyde came from water instead of oxygen. PyzH homologous genes were also found in other soil isolates able to degrade pymetrozine.


Asunto(s)
Hidrolasas , Pseudomonas , Catálisis , Pseudomonas/genética , Triazinas
10.
Ecotoxicol Environ Saf ; 224: 112666, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34416635

RESUMEN

Carbaryl is the representative of carbamate insecticide. As an acetylcholinesterase inhibitor, it poses potential threat to humans and other non-target organisms. Agrobacterium sp. XWY-2, which could grow with carbaryl as the sole carbon source, was isolated and characterized. The carH gene, encoding a carbaryl hydrolase, was cloned from strain XWY-2 and expressed in Escherichia coli BL21 (DE3). CarH was able to hydrolyze carbamate pesticides including carbaryl, carbofuran, isoprocarb, propoxur and fenobucarb efficiently, while it hydrolyzed oxamyl and aldicarb poorly. The optimal pH of CarH was 8.0 and the optimal temperature was 30 â„ƒ. The apparent Km and kcat values of CarH for carbaryl were 38.01 ± 2.81 µM and 0.33 ± 0.01 s-1, respectively. The point mutation experiment demonstrated that His341, His343, His346, His416 and D437 are the key sites for CarH to hydrolyze carbaryl.

11.
Bull Environ Contam Toxicol ; 104(1): 128-133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31728557

RESUMEN

Ethylenediaminetetraacetic acid disodium salt (EDTA) was selected among various eluents due to its highest removal efficiency for lead (Pb) (43.7%) and zinc (Zn) (57.1%) leaching from Pb-Zn contaminated soil by soil column experiment. Compared with newly prepared EDTA eluent, using recycled EDTA eluent can still leaching down 71.1% of Pb and 63.2% of Zn respectively, which showed the reusable benefits of recycled EDTA eluent. After soils were leached by EDTA, soil quality decline, such as reducing of urease, catalase, invertase activities and microorganism numbers. However, adding 5% nutrition soil or earthworm fertilizer can significantly improve the quality of EDTA leached soil, and promote growth of peas and ryegrass compared with EDTA treatments. Overall, the improvement of EDTA leached soil by adding nutrition soil or earthworm fertilizer is important, and recycled EDTA eluent can recycle and re-use for Pb-Zn contaminated soil remediation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Reciclaje , Contaminantes del Suelo/análisis , Ácido Edético/química , Suelo , Zinc/química
12.
Arch Biochem Biophys ; 675: 108108, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31550444

RESUMEN

The insufficient vascularization is a major challenge in bone tissue engineering, leading to partial necrosis of the implant. Pre-vascularization is a promising way via in vitro cells co-culture strategies using osteogenic cells and vasculogenic cells, and the cross-talk of cells is essential. In the present study, the effect of rat bone-marrow derived mesenchymal stem cells (BMSCs) on angiogenic capability of human umbilical vein endothelial cells (HUVECs) in growth medium (GM) and osteogenic induction medium (OIM) was investigated. It was demonstrated that cells co-cultured in OIM showed high efficiency in osteogenesis but failed to form capillary-like structure while the results of co-culture in GM were the opposite. By comparing the angiogenic capacity of co-cultures under GM and OIM, chemokine (C-X-C motif) ligand 9 (Cxcl9), secreted by BMSCs in OIM, was identified to be an angiostatic factor to counter-regulate vascular endothelial growth factor (VEGF) and prevent its binding to HUVECs, which abrogated angiogenesis of MSCs-ECs co-culture. Moreover, Cxcl9 was proved to suppress the osteogenic differentiation of BMSCs monoculture. The molecular mechanism of Cxcl9 activation in BMSCs involved mTOR/STAT1 signaling pathway. Therefore, blocking this signaling pathway via rapamycin addition resulted in the inhibition of Cxcl9 and improvement of osteogenic differentiation and angiogenic capacity of co-culture in OIM. These results reveal that Cxcl9 is a negative modulator of angiogenesis and osteogenesis, and its inhibition could promote pre-vascularization of bone tissue engineering.


Asunto(s)
Quimiocina CXCL9/antagonistas & inhibidores , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Animales , Diferenciación Celular , Quimiocina CXCL9/metabolismo , Técnicas de Cocultivo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Osteogénesis , Unión Proteica , Ratas , Factor de Transcripción STAT1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/fisiología
13.
J Ethnopharmacol ; 329: 118144, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583732

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gynecological disorders have the characteristics of high incidence and recurrence rate, which sorely affects female's health. Since ancient times, traditional Chinese medicine (TCM), especially tonic medicine (TM), has been used to deal with gynecological disorders and has unique advantages in effectiveness and safety. AIM OF THE REVIEW: In this article, we aim to summarize the research progress of TMs in-vivo and in-vitro, including their formulas, single herbs, and compounds, for gynecological disorders treatment in recent years, and to offer a reference for further research on the treatment of gynecological disorders and their clinical application in the treatment of TMs. MATERIALS AND METHODS: Relevant information on the therapeutic potential of TMs against gynecological disorders was collected from several scientific databases including Web of Science, PubMed, CNKI, Google Scholar and other literature sources. RESULTS: So far, there are 46 different formulas, 3 single herbs, and 24 compounds used in the treatment of various gynecological disorders such as premature ovarian failure, endometriosis breast cancer, and so on. Many experimental results have shown that TMs can regulate apoptosis, invasion, migration, oxidative stress, and the immune system. In addition, the effect of TMs in gynecological disorders treatment may be due to the regulation of VEGF, PI3K-AKT, MAPK, NF-κB, and other signaling pathways. Apparently, TMs play an active role in the treatment of gynecological disorders by regulating these signaling pathways. CONCLUSION: TMs have a curative effect on the prevention and treatment of gynecological disorders. It could relieve and treat gynecological disorders through a variety of pathways. Therefore, the appropriate TM treatment program makes it more possible to treat gynecological disorders.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedades de los Genitales Femeninos , Medicina Tradicional China , Humanos , Femenino , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Enfermedades de los Genitales Femeninos/tratamiento farmacológico , Medicina Tradicional China/métodos , Animales
14.
Virus Evol ; 10(1): vead080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361814

RESUMEN

Coxsackievirus A16 (CVA16) is a major pathogen that causes hand, foot, and mouth disease (HFMD). The recombination form (RF) shifts and global transmission dynamics of CVA16 remain unknown. In this retrospective study, global sequences of CVA16 were retrieved from the GenBank database and analyzed using comprehensive phylogenetic inference, RF surveys, and population structure. A total of 1,663 sequences were collected, forming a 442-sequences dataset for VP1 coding region analysis and a 345-sequences dataset for RF identification. Based on the VP1 coding region used for serotyping, three genotypes (A, B, and D), two subgenotypes of genotype B (B1 and B2), and three clusters of subgenotype B1 (B1a, B1b, and B1c) were identified. Cluster B1b has dominated the global epidemics, B2 disappeared in 2000, and D is an emerging genotype dating back to August 2002. Globally, four oscillation phases of CVA16 evolution, with a peak in 2013, and three migration pathways were identified. Europe, China, and Japan have served as the seeds for the global transmission of CVA16. Based on the 3D coding region of the RFs, five clusters of RFs (RF-A to -E) were identified. The shift in RFs from RF-B and RF-C to RF-D was accompanied by a change in genotype from B2 to B1a and B1c and then to B1b. In conclusion, the evolution and population dynamics of CVA16, especially the coevolution of 3D and VP1 genes, revealed that genotype evolution and RF replacement were synergistic rather than stochastic.

15.
Front Immunol ; 13: 1084139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703972

RESUMEN

Purpose: Immune escaping from host herd immunity has been related to changes in viral genomic sequences. The study aimed to understand the diverse immune responses to different subtypes or genotypes of human respiratory syncytial virus (RSV) in pediatric patients. Methods: The genomic sequences of different subtypes or RSV genotypes, isolated from Beijing patients, were sequenced and systematically analyzed. Specifically, the antiviral effects of Palivizumab and the cross-reactivity of human sera from RSV-positive patients to different subtypes or genotypes of RSV were determined. Then, the level of 38 cytokines and chemokines in respiratory and serum samples from RSV-positive patients was evaluated. Results: The highest nucleotide and amino acid variations and the secondary and tertiary structure diversities among different subtypes or genotypes of RSV were found in G, especially for genotype ON1 with a 72bp-insertion compared to NA1 in subtype A, while more mutations of F protein were found in the NH-2 terminal, including the antigenic site II, the target of Palivizumab, containing one change N276S. Palivizumab inhibited subtype A with higher efficiency than subtype B and had stronger inhibitory effects on the reference strains than on isolated strains. However, RSV-positive sera had stronger inhibitory effects on the strains in the same subtypes or genotypes of RSV. The level of IFN-α2, IL-1α, and IL-1ß in respiratory specimens from patients with NA1 was lower than those with ON1, while there were higher TNFα, IFNγ, IL-1α, and IL-1ß in the first serum samples from patients with ON1 compared to those with BA9 of subtype B. Conclusions: Diverse host immune responses were correlated with differential subtypes and genotypes of RSV in pediatric patients, demonstrating the impact of viral genetics on host immunity.


Asunto(s)
Evasión Inmune , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Genotipo , Interleucina-1alfa , Palivizumab/farmacología , Filogenia , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética
16.
Turk J Biol ; 45(6): 683-694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35068949

RESUMEN

Prevascularization and mechanical stimulation have been reported as effective methods for the construction of functional bone tissue. However, their combined effects on osteogenic differentiation and its mechanism remain to be explored. Here, the effects of fluid shear stress (FSS) on osteogenic differentiation of rat bone-marrow-derived mesenchymal stem cells (BMSCs) when cocultured with human umbilical vein endothelial cells (HUVECs) were investigated, and underlying signaling mechanisms were further explored. FSS stimulation for 1-4 h/day increased alkaline phosphatase (ALP) activity and calcium deposition in coculture systems and promoted the proliferation of cocultured cells. FSS stimulation for 2 h/day was selected as the optimized protocol according to osteogenesis in the coculture. In this situation, the mRNA levels of ALP, runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), and protein levels of OCN and osteopontin (OPN) in BMSCs were upregulated. Furthermore, FSS and coculture with HUVECs synergistically increased integrin ß1 expression in BMSCs and further activated focal adhesion kinases (FAKs) and downstream extracellular signal-related kinase (ERK), leading to the enhancement of Runx2 expression. Blocking the phosphorylation of FAK abrogated FSS-induced ERK phosphorylation and inhibited osteogenesis of cocultured BMSCs. These results revealed that FSS and coculture with HUVECs synergistically promotes the osteogenesis of BMSCs, which was mediated by the integrin ß1-FAK-ERK signaling pathway.

17.
Rev Sci Instrum ; 91(3): 035119, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260012

RESUMEN

In this paper, a pressurization-insulation and pre-sealing (PIPS) system is designed to increase the cell pressure of the widely used large volume cubic press without sacrificing cell volume. The sample chamber was sandwiched between a pair of tungsten carbide anvils used as the pressurization system. Ultra-high pressure in the cavity was up to about 12 GPa, and the pressure limit had increased by 100% in contrast with that of an anvil-gasket (AG) system. Furthermore, the confining pressure around the sample chamber was supported by grade 304 stainless steel and a zirconia-calcium oxide solid solution before a press load of 2.8 MN was applied as well as by four surrounding anvils. The relationship between the sample chamber pressure and the press load for this system was calibrated at room temperature using transitions in zinc telluride. With samples of similar volumes, the proposed system retained not only stability but also uniform pressure and temperature fields, in contrast with the AG system and the anvil-preformed gasket cubic press pressurization system. The results of more than 20 experiments show that the proposed PIPS system can operate stably under a press load of 4.2 MN, corresponding cell pressure of 10 GPa, and temperature in the cell exceeding 1800 °C by using graphite as a heater.

18.
Sci Total Environ ; 704: 135410, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31791757

RESUMEN

The proper disposal of copper (Cu) polluted plant residues after phytoremediation has attracted extensive attention. In this study, the Cu-polluted biogas residue produced through anaerobic digestion was applied directly. Wheat, soybean and pakchoi were grown in pots for four seasons over two years. The application dosage of Cu-polluted biogas residue was evaluated by measuring growth conditions of crops, Cu content in edible parts, and amelioration of saline-alkali soil. The results showed that the biomass of the crops, the content of soil organic matter, total N and available P and microbial diversity can be improved, and the Cu concentration of the edible parts was all lower than limit standard. Amendment with 2% biogas residue enhanced the growth of beneficial bacteria and fungi, and decreased the relative abundances of potentially pathogenic fungi in the saline-alkali soil. The results of this study provide a basis for the safe utilisation of copper-polluted plant residues.


Asunto(s)
Biodegradación Ambiental , Biocombustibles , Cobre/análisis , Contaminantes del Suelo/análisis , Álcalis , Productos Agrícolas , Suelo/química
19.
Biol Trace Elem Res ; 88(2): 113-8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12296421

RESUMEN

Diabetes mellitus is characterized by hyperglycemia and is closely related to trace elements. Quite a few pregnant women suffer from impaired glucose tolerance (IGT) or gestational diabetes mellitus (GDM). Investigation of the changes of elemental contents in serum of the pregnant women with IGT and GDM is significant in the etiological research and cure of the diseases. In the present work, the elements Cu, Zn, Ca, Sr, Mg, P, Fe, and Al in the serum of pregnant women were determined. The elemental contents in different experimental groups were compared. Also, the correlation between elemental contents and gestational period was observed. The results showed that compared with normal pregnant women, the Cu contents in serum of pregnant women with GDM increased, but Zn contents had a decreasing trend. In addition, for all pregnant women, the Ca contents in serum had an obvious inverse correlation with gestational period.


Asunto(s)
Diabetes Gestacional/sangre , Aluminio/sangre , Calcio/sangre , China , Cobre/sangre , Femenino , Humanos , Hierro/sangre , Magnesio/sangre , Fósforo/sangre , Embarazo , Estroncio/sangre , Zinc/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA