Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Acta Pharmacol Sin ; 40(9): 1205-1211, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30867543

RESUMEN

Corneal wounds usually heal quickly; but diabetic patients have more fragile corneas and experience delayed and painful healing. In the present study, we compared the healing capacity of corneal epithelial cells (CECs) between normal and diabetic conditions and the potential mechanisms. Primary murine CEC derived from wild-type and diabetic (db/db) mice, as well as primary human CEC were prepared. Human CEC were exposed to high glucose (30 mM) to mimic diabetic conditions. Cell migration and proliferation were assessed using Scratch test and MTT assays, respectively. Reactive oxygen species (ROS) production in the cells was measured using dichlorofluorescein reagent. Western blot was used to evaluate the expression levels of Akt. Transepithelial electrical resistance (TEER) and zonula occludens-1 (ZO-1) expression were used to determine tight junction integrity. We found that the diabetic CEC displayed significantly slower cell proliferation and migration compared with the normal CEC from both mice and humans. Furthermore, ROS production was markedly increased in CEC grown under diabetic conditions. Treatment with an antioxidant N-acetyl cysteine (NAC, 100 µM) significantly decreased ROS production and increased wound healing in diabetic CEC. Barrier function was significantly reduced in both diabetic mouse and human CEC, while NAC treatment mitigated these effects. We further showed that Akt signaling was impaired in diabetic CEC, which was partially improved by NAC treatment. These results show that diabetic conditions lead to delayed wound-healing capacity of CEC and impaired tight junction formation in both mice and human. Increased ROS production and inhibited Akt signaling may contribute to this outcome, implicating these as potential targets for treating corneal wounds in diabetic patients.


Asunto(s)
Movimiento Celular/fisiología , Diabetes Mellitus Experimental/fisiopatología , Células Epiteliales/metabolismo , Transducción de Señal/fisiología , Uniones Estrechas/metabolismo , Cicatrización de Heridas/fisiología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Córnea/citología , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Med Res Rev ; 36(1): 119-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25820039

RESUMEN

Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti-inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases.


Asunto(s)
Alcaloides/uso terapéutico , Neoplasias/tratamiento farmacológico , Esteroides/uso terapéutico , Alcaloides/química , Andrógenos/química , Animales , Antiinflamatorios/química , Antineoplásicos/química , Línea Celular Tumoral , Diosgenina/química , Estrógenos/química , Humanos , Ratones , Alcaloides Solanáceos/química , Tomatina/análogos & derivados , Tomatina/química , Alcaloides de Veratrum/química
3.
Front Oncol ; 10: 60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117723

RESUMEN

MicroRNAs (miRs) play important roles in tumor progression. miR-936 has been reported to suppress cell invasion and proliferation of glioma and non-small cell lung cancer. Nevertheless, the function of miR-936 in laryngeal squamous cell carcinoma (LSCC) remains undiscovered. Hence, our study was to investigate the role of miR-936 in LSCC. In our present research, we have testified that miR-936 was substantially downregulated in LSCC tissues compared with adjacent normal tissues. Furthermore, miR-936 could inhibit proliferation, migration and invasion, and improve the sensitivity to doxorubicin and cisplatin of LSCC cells. Additionally, luciferase reporter assays were performed to confirm that GPR78 was a novel target of miR-936, and the protein expression of GPR78 was obviously inhibited by miR-936 in LSCC cells. In summary, our study indicates that the miR-936/GPR78 axis could be both a diagnostic marker and a therapeutic target for LSCC.

4.
Front Oncol ; 9: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873379

RESUMEN

Urokinase plasminogen activator receptor (uPAR), a member of the lymphocyte antigen 6 protein superfamily, is overexpressed in different types of cancers and plays an important role in tumorigenesis and development. In this study, we successfully targeted uPAR by CRISPR/Cas9 system in two human cancer cell lines with two individual sgRNAs. Knockout of uPAR inhibited cell proliferation, migration and invasion. Furthermore, knockout of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and doxorubicin in these cells. Although there are several limitations in the application of CRISPR/Cas9 system for cancer patients, our study offers valuable evidences for the role of uPAR in cancer malignancy and drug resistance.

5.
Cell Death Dis ; 10(12): 916, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801947

RESUMEN

The burgeoning functions of many microRNAs (miRs) have been well study in cancer. However, the level and function of miR-1205 in laryngeal squamous cell cancer remains unknown. In the current research, we validated that miR-1205 was notably downregulated in human laryngeal squamous cell carcinoma (LSCC) samples in comparison with tissues adjacent to LSCC, and correlated with T stage, lymph node metastasis, and clinical stage. Using Kaplan-Meier analysis indicates that high expression of miR-1205 has a favorable prognosis for patients with LSCC. Functional assays show that enforced miR-1205 expression attenuates the migration, growth, and invasion of LSCC cells. And E2F1 is verified to be a target of miR-1205, while E2F1 binds to miR-1205 promoter and transcriptionally inhibits miR-1205 expression. Overexpression of E2F1 reverses the inhibitory impacts of miR-1205 on LSCC cells in part. Importantly, E2F1 is abnormally increased in LSCC tissues, and its protein levels were inversely relevant to miR-1205 expression. High E2F1 protein level is in connection with clinical stage, T stage, lymph node metastasis, and poor prognosis. Consequently, reciprocal regulation of miR-1205 and E2F1 plays a crucial role in the progression of LSCC, suggesting a new miR-1205/E2F1-based clinical application for patients of LSCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Progresión de la Enfermedad , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , MicroARNs/genética , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ciclina E/metabolismo , Regulación hacia Abajo/genética , Factor de Transcripción E2F1/metabolismo , Células HEK293 , Humanos , Metástasis Linfática , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , Survivin/metabolismo , Regulación hacia Arriba/genética
6.
Front Oncol ; 9: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30746340

RESUMEN

Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine with potent antitumor activity. However, the effect of celastrol on the growth of ovarian cancer cells in vitro and in vivo is still unclear. In this study, we found that celastrol induced cell growth inhibition, cell cycle arrest in G2/M phase and apoptosis with the increased intracellular reactive oxygen species (ROS) accumulation in ovarian cancer cells. Pretreatment with ROS scavenger N-acetyl-cysteine totally blocked the apoptosis induced by celastrol. Additionally, celastrol inhibited the growth of ovarian cancer xenografts in nude mice. Altogether, these findings suggest celastrol is a potential therapeutic agent for treating ovarian cancer.

7.
Front Oncol ; 9: 150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931258

RESUMEN

Tissue factor (TF) is a transmembrane glycoprotein to initiate blood coagulation and frequently overexpressed in a variety of tumors. Our previous study has showed that the expression of TF is upregulated and correlated with prognosis in hepatocellular carcinoma (HCC). However, the role and molecular mechanism of TF in the growth of HCC are still unclear. In vitro and in vivo functional experiments were performed to determine the effect of TF on the growth of HCC cells. A panel of biochemical assays was used to elucidate the underlying mechanisms. TF could promote the growth of HCC in vitro and in vivo by activating both ERK and AKT signaling pathways. TF induced EGFR upregualtion, and inhibition of EGFR suppressed TF-mediated HCC growth. In addition, TF protein expression was correlated with EGFR in HCC tissues. TF promotes HCC growth by upregulation of EGFR, and TF as well as EGFR may be potential therapeutic targets of HCC.

8.
Front Pharmacol ; 9: 1041, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323762

RESUMEN

WEE1 is a tyrosine kinase that regulates G2/M cell cycle checkpoint and frequently overexpressed in various tumors. However, the expression and clinical significance of WEE1 in human laryngeal squamous cell carcinoma (LSCC) are still unknown. In this study, we found that WEE1 was highly expressed in LSCC tissues compared with adjacent normal tissues. Importantly, overexpression of WEE1 was correlated with T stages, lymph node metastasis, clinical stages and poor prognosis of LSCC patients. Furthermore, inhibition of WEE1 by MK-1775 induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular reactive oxygen species (ROS) levels in LSCC cells. Pretreatment with ROS scavenger N-acetyl-L-cysteine could reverse MK-1775-induced ROS accumulation and cell apoptosis in LSCC cells. MK-1775 also inhibited the growth of LSCC xenografts in nude mice. Altogether, these findings suggest that WEE1 is a potential therapeutic target in LSCC, and inhibition of WEE1 is the prospective strategy for LSCC therapy.

9.
Front Oncol ; 8: 631, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619765

RESUMEN

Oxymatrine (OMT) has shown broad antitumor activities for the treatment of several types of cancers. However, little is known about its effect on anti-tumor immunity. Combination therapy is a potentially promising strategy of cancer to enhance anticancer activity, overcome drug resistance, and lower treatment failure rate. In the present study, we demonstrated that the combination of OMT with cisplatin (DDP) synergistically inhibited non-small cell lung cancer (NSCLC) cells growth when co-cultured with peripheral blood mononuclear cells in vitro. Furthermore, the combination of OMT with DDP significantly inhibited the growth of Lewis lung cancer (LLC) mouse xenograft tumors. Flow cytometry analysis revealed that OMT and DDP synergistically increase the CD8+/ regulatory T cells ratio and enhanced more CD8+ T cells secreted cytokines of IFN-γ, TNF-α, and IL-2 in vivo. Mechanistically, upregulation of miR-155 and downregulation of suppressor of cytokine signaling-1 (SOCS1) were confirmed as a target signaling pathway to positively regulate the anti-tumor response of CD8+ T cells. Overall, OMT in combination with DDP showed outstanding synergistic anti-tumor immunity, suggesting that this beneficial combination may offer a potential immunotherapy for NSCLC patients.

10.
Am J Transl Res ; 10(11): 3664-3676, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662617

RESUMEN

Cyclin-dependent kinase 7 (CDK7) is a member of the CDK family, which forms the CDK activating kinase complex with Cyclin H and RING finger protein Mat1 to control cell cycle progression and transcription by phosphorylating other CDKs and RNA polymerase II. In this study, we analyzed TCGA data and found that upregulation of CDK7 frequently occurred in human gastric cancer. A potent and selective irreversible CDK7 inhibitor THZ2 was able to induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the increasing intracellular reactive oxidative species (ROS) levels in gastric cancer cells. Pretreatment with ROS scavenger N-acety-L-cysteine partially reversed cell apoptosis induced by THZ2. In the nude mice, THZ2 also suppressed the growth of xenograft tumors of gastric cancer. Overall, our data showed that inhibition of CDK7 with THZ2 in gastric cancer presented outstanding anticancer effect in vitro and in vivo, suggesting that CDK7 is a potential therapeutic target for gastric cancer patients.

11.
Am J Transl Res ; 10(3): 696-708, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636860

RESUMEN

YM155 (Sepantronium bromide) is a potent small molecule inhibitor of survivin by suppression of survivin expression and shows the promising anticancer activity in many types of cancers. Docetaxel (Taxotere®) is a member of the taxane drugs used in the treatment of a number of cancers in clinic. Despite the therapeutic efficacy of docetaxel is encouraging, the emergent resistance is an urgent issue. In this study, we investigate the effect of YM155 on docetaxel efficacy in ovarian cancer cells. Our data showed that YM155 actively induced cell growth inhibition, cell cycle arrest and apoptosis with downregualtion of survivin in ovarian cancer cells. Moreover, YM155 increased the intracellular ROS levels, and pretreatment with either NAC or GSH partially reversed the YM155-induced ROS accumulation and apoptosis only in the parental A2780 cells, but not in the resistant A2780/Taxol cells. Furthermore, YM155 enhanced docetaxel efficacy to inhibit the growth and induce apoptosis in ovarian cancer cells. Take together, our results suggested that combination of YM155 and docetaxel may be a feasible strategy for the treatment of ovarian cancer.

12.
Am J Transl Res ; 9(8): 3804-3815, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861171

RESUMEN

Caragaphenol A (CAA) is a novel resveratrol trimer isolated from the roots of Caraganastenophylla. However, the biological activity of CAA is still unknown. In the present study, we investigated the anticancer effects of CAA on gastric cancer cells. CAA selectively inhibited cell growth of human gastric cancer cells. Moreover, CAA potently induced cell cycle arrest at G2/M phase and apoptosis with the increased intracellular reactive oxidative species (ROS) level. Inhibition of ROS could partially rescue CAA-induced cell apoptosis. Additionally, DNA is not the target of CAA. CAA in combination with DDP or 5FU synergistically inhibited the growth of human gastric cancer cells. Altogether, our study provides the evidence for the potential therapeutic application of CAA on human gastric cancer.

13.
Am J Transl Res ; 9(4): 1667-1679, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28469773

RESUMEN

Crizotinib, a small molecule inhibitor of anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1) and c-MET (also called MET or hepatocyte growth factor receptor), has been approved by the Food and Drug Administration for the treatment of patients with advanced non-small cell lung cancer whose tumors have rearrangements in the ALK or ROS1 gene. However, the anticancer effect of crizotinib on ovarian cancer is still unclear. In this study, our data show that crizotinib can actively induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the decreasing phosphorylation of the downstream signaling effectors AKT and ERK in human ovarian cancer cells. Crizotinib also increases the intracellular reactive oxidative species (ROS) levels, and pretreating with ROS scavenger N-acety-L-cysteine partially reverses crizotinib-induced apoptosis. Moreover, crizotinib can synergistically inhibit ovarian cancer cells growth in vitro and in vivo when combines with cisplatin. Altogether, crizotinib potently potentiates the activity of cisplatin in ovarian cancer, suggesting the synergistic effect of crizotinib and cisplatin may be valuable for ovarian cancer patients' treatment.

14.
J Hematol Oncol ; 10(1): 32, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28122647

RESUMEN

The emerging roles of microRNAs (miRs) have been deeply investigated in cancer. However, the role of miR-194 in human laryngeal squamous cell carcinoma (LSCC) is still unclear. Here, we have demonstrated that miR-194 is significantly downregulated in LSCC tissues and cells, and overexpression of miR-194 inhibits the proliferation, migration, invasion, and drug resistance in LSCC cells. Moreover, Wee1 is identified as a novel direct target of miR-194. Ectopic expression of Wee1 at least in part overcomes the suppressive impacts of miR-194 on the malignant phenotypes of LSCC. Overall, our study provides new sights into the role of miR-194/Wee1 axis in LSCC and suggests a novel miR-194/Wee1-based clinical application for LSCC patients.


Asunto(s)
Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/metabolismo , Neoplasias Laríngeas/patología , MicroARNs/fisiología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Biopsia , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Invasividad Neoplásica , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores
15.
Cancer Lett ; 386: 100-109, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864115

RESUMEN

Regorafenib significantly prolongs overall survival in patients with metastatic colorectal cancer (mCRC), but the overall clinical efficacy of regorafenib remains quite limited. Combination chemotherapy is a potentially promising approach to enhance anticancer activity, overcome drug resistance, and improve disease-free and overall survival. The current study investigates the antitumor activity of regorafenib in combination with lapatinib in preclinical models of human CRC. Our results show improved antitumor efficacy when regorafenib is combined with lapatinib both in vitro and in vivo. Furthermore, pharmacokinetic analyses revealed that regorafenib and lapatinib do not influence on each plasma concentration. The finding that regorafenib in combination with lapatinib have synergistic activity warrants further clinical investigation of this beneficial combination as a potential treatment strategy for CRC patients.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinazolinas/farmacología , Inhibidores de la Angiogénesis/farmacocinética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Células HCT116 , Células HT29 , Humanos , Concentración 50 Inhibidora , Lapatinib , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Neovascularización Patológica , Compuestos de Fenilurea/farmacocinética , Inhibidores de Proteínas Quinasas/farmacocinética , Piridinas/farmacocinética , Quinazolinas/farmacocinética , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Am J Transl Res ; 8(9): 3986-3994, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27725879

RESUMEN

The RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system is a new rapid and precise technology for genome editing. In the present study, we applied the CRISPR/Cas9 system to target ABCB1 (also named MDR1) gene which encodes a 170 kDa transmembrane glycoprotein (P-glycoprotein/P-gp) transporting multiple types of chemotherapeutic drugs including taxanes, epipodophyllotoxins, vinca alkaloids and anthracyclines out of cells to contribute multidrug resistance (MDR) in cancer cells. Our data showed that knockout of ABCB1 by CRISPR/Cas9 system was succesfully archieved with two target sgRNAs in two MDR cancer cells due to the alteration of genome sequences. Knockout of ABCB1 by CRISPR/Cas9 system significantly enhances the sensitivity of ABCB1 substrate chemotherapeutic agents and the intracellular accumulation of rhodamine 123 and doxorubicin in MDR cancer cells. Although now there are lots of limitations to the application of CRISPR/Cas9 for editing cancer genes in human patients, our study provides valuable clues for the use of the CRISPR/Cas9 technology in the investigation and conquest of cancer MDR.

17.
Am J Cancer Res ; 6(11): 2476-2488, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27904765

RESUMEN

Hepatocellular carcinoma (HCC) is the sixth most frequent malignant tumor with poor prognosis, and its clinical therapeutic outcome is poor. Volasertib, a potent small molecular inhibitor of polo-like kinase 1 (PLK1), is currently tested for treatment of multiple cancers in the clinical trials. However, the antitumor effect of volasertib on HCC is still unknown. In this study, our data show that volasertib is able to induce cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the spindle abnormalities in human HCC cells. Furthermore, volasertib also increases the intracellular reactive oxidative species (ROS) levels, and pretreated with ROS scavenger N-acety-L-cysteine partly reverses volasertib-induced apoptosis. Moreover, volasertib markedly inhibits the subcutaneous xenograft growth of HCC in nude mice. Overall, our study provides new therapeutic potential of volasertib on hepatocellular carcinoma.

18.
Am J Transl Res ; 8(7): 2969-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27508017

RESUMEN

Overexpression of ABCB1 in cancer cells is one of the main reasons of cancer multidrug resistance (MDR). Wallichinine is a compound isolated from piper wallichii and works as an antagonist of platelet activiating factor receptor to inhibit the gathering of blood platelet. In this study, we investigate the effect of wallichinine on cancer MDR mediated by ABCB1 transporter. Wallichinine significantly potentiates the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in ABCB1 overexpressing cancer cells. Furthermore, wallichinine do not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, wallichinine blocks the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. The predicted binding mode shows the hydrophobic interactions of wallichinine within the large drug binding cavity of ABCB1. At all, our study of the interaction of wallichinine with ABCB1 presented herein provides valuable clues for the development of novel MDR reversal reagents from natural products.

20.
Oncotarget ; 6(26): 22564-74, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26087186

RESUMEN

Toll-like receptors (TLRs) play an important role in tumorigenesis and progress of prostate cancer. However, the function and mechanism of Toll-like receptor-9 (TLR9) in prostate cancer is not totally understood. Here, we found that high expression of TLR9 was associated with a higher probability of lymph node metastasis and poor prognosis. Further in vitro functional study verified that silence of TLR9 inhibited migration and invasion of PC-3 cells, indicating expression of TLR9 involving in the migration and invasion of cancer cells. The data of microarray exhibited silence of TLR9 induced 205 genes with larger than 2-fold changes in expression levels, including 164 genes down-regulated and 41 genes up-regulated. Functional Gene Ontology (GO) processes annotation demonstrated that the top three scores of molecular and cellular functions were regulation of programmed cell death, regulation of locomotion and response to calcium ion. TLR9 signaling network analysis of the migration and invasion related genes identified several genes, like matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), chemokine receptor 4 (CXCR4) and interleukin 8 (IL8), formed the core interaction network based on their known biological relationships. A few genes, such as odontogenic ameloblast-associated protein (ODAM), claudin 2 (CLDN2), gap junction protein beta 1 (GJB1) and Rho-associated coiled-coil containing protein kinase 1 pseudogene 1 (ROCK1P1), so far have not been found to interact with the other genes. This study provided the foundation to discover the new molecular mechanism in signaling networks of invasion and metastasis in prostate cancer.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor Toll-Like 9/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA