Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(2): 481-490, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36803726

RESUMEN

Nutrient enrichment caused by fertilization would reduce the diversity of arbuscular mycorrhizal fungi (AMF). To explore whether partial substitution of chemical fertilizer with organic fertilizer would alleviate the negative effects of nutrient enrichment on AMF, we conducted a two-year mango (Mangifera indica) field experiment to examine the effects of different fertilization regimes on AMF communities in roots and rhizospheric soils by using high-throughput sequencing. The treatments included chemical-only fertilization (control), and two kinds of organic fertilizer (commercial organic fertilizer and bio-organic fertilizer) with replacing 12% (low) and 38% (high) chemical fertilizer. The results showed that under equivalent nutrient input, partial substitution of chemical fertilizer with organic fertilizer had positive effects on the yield and quality of mango. The application of organic fertilizer could effectively increase AMF richness. AMF diversity was significantly positively correlated with some indices of fruit quality. Compared with chemical-only fertilization, high replacement ratio of organic fertilizer could significantly change root AMF community, but did not affect AMF community in the rhizospheric soil. Bio-organic fertilizer could enrich more AMF species and form a more complex AMF co-occurrence network than commercial organic fertilizer. In all, replacing chemical fertilizer with a high proportion of organic fertilizer could improve the yield and quality of mango while maintain AMF richness. The changes of AMF community caused by organic fertilizer substitution pre-ferably occurred in roots rather than soils.


Asunto(s)
Mangifera , Micobioma , Micorrizas , Fertilizantes , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo
2.
Ying Yong Sheng Tai Xue Bao ; 33(4): 1099-1108, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35543065

RESUMEN

Organic fertilizer application can replace a part of chemical fertilizer (CF) to improve the quality and efficiency of litchi production. To further explore the soil microbiological mechanism, with 19-year-old 'Feizixiao' litchi trees as the research objects, we examined the effects of two consecutive years of reduced CF applications (average 21.5% of total nutrients) combined with sheep manure (OF) and bio-organic fertilizers (BIO) on soil microbial diversity, community composition and differential microorganisms. The results showed that reducing the application of chemical fertilizers and combining it with the application of sheep manure and bio-organic fertilizer for two consecutive years could significantly improve yield and quality. The average increase of yield in the two years was 23.1% and 39.0%, respectively. Soil organic matter content and pH increased significantly in response to the combination treatments. Compared to that in the chemical fertilizer treatment, the contents of soil available phosphorus, potassium, calcium, magnesium, iron, manganese, copper, and zinc displayed an increasing trend in the combination treatments. The application of organic fertilizer increased the diversity of bacteria and fungi in rhizosphere soil, but not in non-rhizosphere soil. Both treatments significantly changed soil microbial community structure, increased eutrophic bacterial groups such as Bacteroides, Proteobacteria, and Bacillus phylum, and reduced anatrophic bacterial groups such as Acidobacteria and Chloroflexus. Compared with CF, the relative abundances of MND1 under OF and TK10, Gemmatimonas, Pseudolabrys, Trichoderma and Botryotrichum under BIO were significantly increased, which was positively correlated with yield. In conclusion, reducing CF and applying organic ferti-lizer for two consecutive years could effectively improve soil pH and nutrient availability, increase rhizosphere microbial richness and diversity, change soil microbial community structure, and shape microbial communities being more conducive to yield and quality improvement.


Asunto(s)
Litchi , Microbiota , Animales , Bacterias , Fertilizantes/análisis , Estiércol , Ovinos , Suelo/química , Microbiología del Suelo
3.
Front Microbiol ; 13: 917000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847059

RESUMEN

Stevia rebaudiana Bertoni is grown worldwide as an important, natural sweetener resource plant. The yield of steviol glycosides (SVglys) is greatly influenced by continuous cropping. In this study, we collected the roots, rhizosphere soils, and bulk soils from 2 years of continuous cropping (Y2) and 8 years of continuous cropping (Y8). A high-throughput sequencing technology based on Illumina Hiseq 2500 platform was used to study the structure and diversity of bacterial communities in the roots and soils of stevia with different years of continuous cropping. The results demonstrated that although the content of a group of SVglys was significantly increased in stevia of long-term continuous cropping, it inhibited the growth of plants and lowered the leaf dry weight; as a result, the total amount of SVglys was significantly decreased. Meanwhile, continuous cropping changed the physicochemical properties and the bacterial composition communities of soil. The different sampling sources of the root, rhizosphere soil, and bulk soil had no impact on the richness of bacterial communities, while it exhibited obvious effects on the diversity of bacterial communities. Continuous cropping had a stronger effect on the bacterial community composition in rhizosphere soil than in root and bulk soil. Based on linear discriminant analysis effect size (LEfSe), in the rhizosphere soil of Y8, the relative abundance of some beneficial bacterial genera of Sphingomonas, Devosia, Streptomyces, and Flavobacterium decreased significantly, while the relative abundance of Polycyclovorans, Haliangium, and Nitrospira greatly increased. Moreover, the soil pH and nutrient content, especially the soil organic matter, were correlated with the relative abundance of predominant bacteria at the genus level. This study provides a theoretical basis for uncovering the mechanism of obstacles in continuous stevia cropping and provides guidance for the sustainable development of stevia.

4.
Front Plant Sci ; 13: 1040134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699828

RESUMEN

Background: Arbuscular mycorrhizal fungi (AMF) are beneficial soil fungi which can effectively help plants with acquisition of mineral nutrients and water and promote their growth and development. The effects of indigenous and commercial isolates of arbuscular mycorrhizal fungi on pear (Pyrus betulaefolia) trees, however, remains unclear. Methods: Trifolium repens was used to propagate indigenous AMF to simulate spore propagation in natural soils in three ways: 1. the collected soil was mixed with fine roots (R), 2. fine roots were removed from the collected soil (S), and 3. the collected soil was sterilized with 50 kGy 60Co γ-radiation (CK). To study the effects of indigenous AMF on root growth and metabolism of pear trees, CK (sterilized soil from CK in T. repens mixed with sterilized standard soil), indigenous AMF (R, soil from R in T. repens mixed with sterilized standard soil; S, soil from S in T. repens mixed with sterilized standard soil), and two commercial AMF isolates (Rhizophagus intraradices(Ri) and Funneliformis mosseae (Fm)) inoculated in the media with pear roots. Effects on plant growth, root morphology, mineral nutrient accumulation, metabolite composition and abundance, and gene expression were analyzed. Results: AMF treatment significantly increased growth performance, and altered root morphology and mineral nutrient accumulation in this study, with the S treatment displaying overall better performance. In addition, indigenous AMF and commercial AMF isolates displayed common and divergent responses on metabolite and gene expression in pear roots. Compared with CK, most types of flavones, isoflavones, and carbohydrates decreased in the AMF treatment, whereas most types of fatty acids, amino acids, glycerolipids, and glycerophospholipids increased in response to the AMF treatments. Further, the relative abundance of amino acids, flavonoids and carbohydrates displayed different trends between indigenous and commercial AMF isolates. The Fm and S treatments altered gene expression in relation to root metabolism resulting in enriched fructose and mannose metabolism (ko00051), fatty acid biosynthesis (ko00061) and flavonoid biosynthesis (ko00941). Conclusions: This study demonstrates that indigenous AMF and commercial AMF isolates elicited different effects in pear plants through divergent responses from gene transcription to metabolite accumulation.

5.
AMB Express ; 11(1): 164, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878599

RESUMEN

Severe early defoliation has become an important factor restricting the development of the pear industry in southern China. However, the assembly patterns of microbial communities and their functional activities in response to the application of bioorganic fertilizer (BIO) or humic acid (HA) in southern China's pear orchards remain poorly understood, particularly the impact on the early defoliation of the trees. We conducted a 3-year field experiment (2017-2019) in an 18-year-old 'Cuiguan' pear orchard. Four fertilization schemes were tested: local custom fertilization as control (CK), CK plus HA (CK-HA), BIO, and BIO plus HA (BIO-HA). Results showed that BIO and BIO-HA application decreased the early defoliation rate by 50-60%, and increased pear yield by 40% compared with the CK and CK-HA treatments. The BIO and BIO-HA application significantly improved soil pH, available nutrient content, total enzyme activity and ecosystem multifunctionality, and also changed the structure of soil bacterial and fungal communities. The genus Acidothermus was positively correlated with the early defoliation rate, while the genus Rhodanobacter was negatively correlated. Additionally, random forest models revealed that the early defoliation rate could be best explained by soil pH, ammonium content, available phosphorus, and total enzyme activity. In conclusion, application of BIO or BIO mixed with HA could have assembled distinct microbial communities and increased total enzyme activity, leading to significant improvement of soil physicochemical traits. The increased availability of soil nutrient thus changed leaf nutrient concentrations and alleviated the early defoliation rate of pear trees in acid red soil in southern China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA