Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(6): e2309890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38011853

RESUMEN

Pure-phase α-FAPbI3 quantum dots (QDs) are the focus of an increasing interest in photovoltaics due to their superior ambient stability, large absorption coefficient, and long charge-carrier lifetime. However, the trap states induced by the ligand-exchange process limit the photovoltaic performances. Here, a simple post treatment using methylamine thiocyanate is developed to reconstruct the FAPbI3 -QD film surface, in which a MAPbI3 capping layer with a thickness of 6.2 nm is formed on the film top. This planar perovskite heterojunction leads to a reduced density of trap-states, a decreased band gap, and a facilitated charge carrier transport. As a result, a record high power conversion efficiency (PCE) of 16.23% with negligible hysteresis is achieved for the FAPbI3 QD solar cell, and it retains over 90% of the initial PCE after being stored in ambient environment for 1000 h.

2.
Nanoscale ; 15(38): 15768-15774, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37740389

RESUMEN

Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.

3.
ACS Appl Mater Interfaces ; 13(2): 2558-2565, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33416305

RESUMEN

Passivating the defective surface of perovskite films is becoming a particularly effective approach to further boost the efficiency and stability of their solar cells. Organic ammonium halide salts are extensively utilized as passivation agents in the form of their corresponding 2D perovskites to construct the 2D/3D perovskite bilayer architecture for superior device performance; however, this bilayer device partly suffers from the postannealing-induced destructiveness to the 3D perovskite bulk and charge transport barrier induced by the quantum confinement existing in the 2D perovskite. Hence, developing direct passivation of the perovskite layer by organic ammonium halides for high-performance devices can well address the above-mentioned issues, which has rarely been explored. Herein, an effective passivation strategy is proposed to directly modify the perovskite surface with an organic halide salt 4-fluorophenethylammonium iodide (F-PEAI) without further postannealing. The F-PEAI passivation largely inhibits the formation of the iodine vacancies and thus dramatically reduces the film defects, resulting in a much slower charge trapping process. Consequently, the F-PEAI-modified device achieves a much higher champion efficiency (21%) than that (19.5%) of the control device, which dominantly results from more efficient suppression of interfacial nonradiative recombination and the subsequent decreased recombination losses. Additionally, the F-PEAI-treated device maintains 90% of its initial efficiency after 720 h of humidity aging owing to the enhanced hydrophobicity and decreased trap states, highlighting good ambient stability. These results provide an effective passivation strategy toward efficient and stable perovskite solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA