Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; 20(34): e2401017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593292

RESUMEN

Doping is a recognized method for enhancing catalytic performance. The introduction of strains is a common consequence of doping, although it is often overlooked. Differentiating the impact of doping and strain on catalytic performance poses a significant challenge. In this study, Cu-doped Bi catalysts with substantial tensile strain are synthesized. The synergistic effects of doping and strain in bismuth result in a remarkable CO2RR performance. Under optimized conditions, Cu1/6-Bi demonstrates exceptional formate Faradaic efficiency (>95%) and maintains over 90% across a wide potential window of 900 mV. Furthermore, it delivers an industrial-relevant partial current density of -317 mA cm-2 at -1.2 VRHE in a flow cell, while maintaining its selectivity. Additionally, it exhibits exceptional long-term stability, surpassing 120 h at -200 mA cm-2. Through experimental and theoretical mechanistic investigations, it has been determined that the introduction of tensile strain facilitates the adsorption of *CO2, thereby enhancing the reaction kinetics. Moreover, the presence of Cu dopants and tensile strain further diminishes the energy barrier for the formation of *OCHO intermediate. This study not only offers valuable insights for the development of effective catalysts for CO2RR through doping, but also establishes correlations between doping, lattice strains, and catalytic properties of bismuth catalysts.

2.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684873

RESUMEN

Body temperature provides an insight into the physiological state of a person, and body temperature changes reflect much information about human health. In this study, a garment for monitoring human body temperature based on fiber Bragg grating (FBG) sensors is reported. The FBG sensor was encapsulated with a PMMA tube and calibrated in the thermostatic water bath. The results showed that FBG sensors had good vibration resistance, and the wavelength changed about 0-1 pm at a 0.5-80 Hz vibration frequency. The bending path of the optical fiber after integration with clothing is discussed. When the bending radius is equal to or greater than 20 mm, a lower bending loss can be achieved even under the bending and stretching of the human body. The FBG sensor, the optical fiber, and the garment were integrated together using hot melt glue by the electric iron and the hot press machine. Through experiments of monitoring human body temperature, the sensor can reach the human armpit temperature in about 10-15 min with the upper arm close to the torso. Because it is immune to electromagnetic interferences, the smart garment can be used in some special environments such as ultrasonography, magnetic resonance (MR), and aerospace.


Asunto(s)
Temperatura Corporal , Tecnología de Fibra Óptica , Vestuario , Tecnología de Fibra Óptica/métodos , Cuerpo Humano , Humanos , Fibras Ópticas
3.
J Am Chem Soc ; 141(40): 15804-15817, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553590

RESUMEN

Cellular delivery of biomacromolecules is vital to medical research and therapeutic development. Cationic polymers are promising and affordable candidate vehicles for these precious payloads. However, the impact of polycation architecture and solution assembly on the biological mechanisms and efficacy of these vehicles has not been clearly defined. In this study, four polymers containing the same cationic poly(2-(dimethylamino)ethyl methacrylate) (D) block but placed in different architectures have been synthesized, characterized, and compared for cargo binding and biological performance. The D homopolymer and its diblock copolymer poly(ethylene glycol)-block-poly(2-(dimethylamino) ethyl methacrylate) (OD) readily encapsulate pDNA to form polyplexes. Two amphiphilic block polymer variants, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (ODB), self-assemble into micelles, which template pDNA winding around the cationic corona to form micelleplexes. Micelleplexes were found to have superior delivery efficiency compared to polyplexes and detailed physicochemical and biological characterizations were performed to pinpoint the mechanisms by testing hypotheses related to cellular internalization, intracellular trafficking, and pDNA unpackaging. For the first time, we find that the higher concentration of amines housed in micelleplexes stimulates both cellular internalization and potential endosomal escape, and the physical motif of pDNA winding into micelleplexes, reminiscent of DNA compaction by histones in chromatin, preserves the pDNA secondary structure in its native B form. This likely allows greater payload accessibility for protein expression with micelleplexes compared to polyplexes, which tightly condense pDNA and significantly distort its helicity. This work provides important guidance for the design of successful biomolecular delivery systems via optimizing the physicochemical properties.


Asunto(s)
Empaquetamiento del ADN/genética , ADN/genética , Técnicas de Transferencia de Gen , Metacrilatos/química , Nylons/química , Polielectrolitos/química , Polietilenglicoles/química , Supervivencia Celular , Endocitosis/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Micelas , Estructura Molecular , Polielectrolitos/toxicidad , Transfección
4.
J Am Chem Soc ; 140(35): 11101-11111, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30137979

RESUMEN

Compaction of DNA by oppositely charged nanoparticles is a fundamental phenomenon in nature and of great interest to developing therapeutics. In addition, the ability to orthogonally control the composition and structure of interpolyelectrolyte complexes is needed to develop materials for diverse applications. Herein, we systematically investigate the complexation of plasmid DNA and polymeric cationic AB and ABC micelles to explore the influence of micelle outer nonionic corona length on the colloidal stability, size, composition, and structure of the resulting "micelleplexes". The micelles were self-assembled from amphiphilic block polymers, poly(ethylene glycol)- block-poly((2-dimethylamino)ethyl methacrylate)- block-poly( n-butyl methacrylate) (PEG- b-PDMAEMA- b-PnBMA), and PDMAEMA- b-PnBMA with the same Mn of PDMAEMA. These spherical micelles have similar hydrodynamic radii and core sizes, but the Mn of the outer PEG block ranged from 0 to 10 kDa. The colloidal stability of micelleplexes as a function of stoichiometric charge ratio was assessed by turbidimetric titration and was found to dramatically improve with the addition of an outer PEG corona, even as short as 2 kDa. With the use of a combination of dynamic and static light scattering, ζ-potential, and cryogenic transmission electron microscopy, it was found that the size, composition, and structure of micelleplexes are closely correlated with the Mn of the PEG block. Indeed, these micelleplexes were found to adopt beads-on-a-string morphologies that resemble the general structure of chromatin, and the number of micelles per micelleplex systematically decreased with increasing PEG length. These findings demonstrate the power of polycationic micelles to condense DNA into biomimetic structures and provide a mechanistic understanding of nucleic acid complexation and of how micelle architecture affects the properties of micelleplexes, while offering an appealing strategy to control the properties of micelleplexes by tuning a single parameter.


Asunto(s)
ADN/química , Polímeros/química , Coloides/química , Micelas , Estructura Molecular , Tamaño de la Partícula , Plásmidos , Polímeros/síntesis química , Propiedades de Superficie
5.
Biomacromolecules ; 17(9): 2849-59, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27487088

RESUMEN

The formation, morphology, and pH and ionic strength responses of cationic block copolymer micelles in aqueous solutions have been examined in detail to provide insight into the future development of cationic micelles for complexation with polyanions such as DNA. Diblock polymers composed of a hydrophilic/cationic block of N,N-dimethylaminoethyl methacrylate (DMAEMA) and a hydrophobic/nonionic block of n-butyl methacrylate (BMA) were synthesized [denoted as DMAEMA-b-BMA (X-Y), where X = DMAEMA molecular weight and Y = molecular weight of BMA in kDa]. Four variants were created with block molecular weights of 14-13, 14-23, 27-14, 27-29 kDa and low dispersities less than 1.10. The amphiphilic polymers self-assembled in aqueous conditions into core-shell micelles that ranged in size from 25-80 nm. These cationic micelles were extensively characterized in terms of size and net charge in different buffers over a wide range of ionic strength (0.02-1 M) and pH (5-10) conditions. The micelle core is kinetically trapped, and the corona contracts with increasing pH and ionic strength, consistent with previous work on micelles with glassy polystyrene cores, indicating that the corona properties are independent of the dynamics of the micelle core. The contraction and extension of the corona scales with solution ionic strength and charge fraction of the amine groups. The aggregation numbers of the micelles were obtained by static light scattering, and the Rg/Rh ratios are close to that of a hard sphere. The zeta potentials of the micelles were positive up to two pH units above the corona pKa, suggesting that applications relying on micelle charge for stability should be viable over a wide range of solution conditions.


Asunto(s)
Cationes/química , Micelas , Polímeros/química , Poliestirenos/química , Concentración de Iones de Hidrógeno , Concentración Osmolar
6.
Colloids Surf B Biointerfaces ; 240: 113970, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788474

RESUMEN

Extracts of traditional Chinese herbs (TCH) contain a variety of anti-allergic, anti-inflammatory and other bioactive factors. However, the defect of easy degradation or loss of active ingredients limits its application in traditional Chinese medicines (TCM) loaded textiles. In this work, TCH extracts containing different active ingredients were innovatively proposed as the core material of microcapsules. The feasibility of microencapsulation of multi-component TCH extracts in the essential oil state was initially demonstrated. Polyacrylate was also used as a binder to load the microcapsules onto the fabric to improve the durability and wash resistance of the treated fabric. Modeling the oil release of microcapsules for controlled release under different conditions may provide new possible uses for the materials. Results show that the constructed microcapsule has a smooth surface without depression and can be continuously released for over 30 days. The release behavior of microcapsules follows different release mechanisms and can be modulated by temperature and water molecules. The incorporation of microcapsules and polyacrylate does not significantly change the fabric's air permeability, water vapor transmission and hydrophilicity. The washing durability and friction properties of the microcapsule-based fabric are greatly improved, and it can withstand 30 washing tests and 200 friction tests. Moreover, the results of methyl thiazolyl tetrazolium (MTT) release assay using human dermal papilla cells (HDP) as an in vitro template confirm that the microcapsule has no toxic effects on human cells. Therefore, the successful microencapsulation of multi-component TCH extracts indicates their potential application in the field of TCM-loaded textiles.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Textiles , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Composición de Medicamentos/métodos , Cápsulas/química , Supervivencia Celular/efectos de los fármacos
7.
Evol Bioinform Online ; 20: 11769343241261814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883803

RESUMEN

Background: Pseudogenes are sequences that have lost the ability to transcribe RNA molecules or encode truncated but possibly functional proteins. While they were once considered to be meaningless remnants of evolution, recent researches have shown that pseudogenes play important roles in various biological processes. However, the studies of pseudogenes in the silkworm, an important model organism, are limited and have focused on single or only a few specific genes. Objective: To fill these gaps, we present a systematic genome-wide studies of pseudogenes in the silkworm. Methods: We identified the pseudogenes in the silkworm using the silkworm genome assemblies, transcriptome, protein sequences from silkworm and its related species. Then we used transcriptome datasets from 832 RNA-seq analyses to construct spatio-temporal expression profiles for these pseudogenes. Additionally, we identified tissue-specifically expressed and differentially expressed pseudogenes to further understand their characteristics. Finally, the functional roles of pseudogenes as lncRNAs were systematically analyzed. Results: We identified a total of 4410 pseudogenes, which were grouped into 4 groups, including duplications (DUPs), unitary pseudogenes (Unitary), processed pseudogenes (retropseudogenes, RETs), and fragments (FRAGs). The most of pseudogenes in the domestic silkworm were generated before the divergence of wild and domestic silkworm, however, the domestication may also involve in the accumulation of pseudogenes. These pseudogenes were clearly divided into 2 cluster, a highly expressed and a lowly expressed, and the posterior silk gland was the tissue with the most tissue-specific pseudogenes (199), implying these pseudogenes may be involved in the development and function of silkgland. We identified 3299 lncRNAs in these pseudogenes, and the target genes of these lncRNAs in silkworm pseudogenes were enriched in the egg formation and olfactory function. Conclusions: This study replenishes the genome annotations for silkworm, provide valuable insights into the biological roles of pseudogenes. It will also contribute to our understanding of the complex gene regulatory networks in the silkworm and will potentially have implications for other organisms as well.

8.
Nanotechnology ; 24(15): 155602, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23518622

RESUMEN

A chemical pattern consisting of end-grafted polystyrene brushes (20 nm lines on a 40 nm pitch) on the native oxide of silicon wafers was defined by molecular transfer printing from assembled block co-polymer films. End-grafted hydroxyl-terminated poly(2-vinyl pyridine) brushes were selectively deposited in the interspatial regions. The poly(2-vinyl pyridine) regions selectively sequester acidic HAuCl4 from solution and form arrays of small Au nanoparticles upon exposure to oxygen plasma within the confines of the macromolecular brush layer. This print and fill process to pattern polymer brushes is a generalizable strategy to create functional chemical surface patterns.


Asunto(s)
Compuestos de Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Nanotecnología/instrumentación , Nanotecnología/métodos , Poliestirenos/química , Polivinilos/química , Cloruros/química , Oro/química
9.
PeerJ ; 11: e14682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36655040

RESUMEN

The silkworm (Bombyx mori) is not only an excellent model species, but also an important agricultural economic insect. Taking it as the research object, its advantages of low maintenance cost and no biohazard risks are considered. Small open reading frames (smORFs) are an important class of genomic elements that can produce bioactive peptides. However, the smORFs in silkworm had been poorly identified and studied. To further study the smORFs in silkworm, systematic genome-wide identification is essential. Here, we identified and analyzed smORFs in the silkworm using comprehensive methods. Our results showed that at least 738 highly reliable smORFs were found in B. mori and that 34,401 possible smORFs were partially supported. We also identified some differentially expressed and tissue-specific-expressed smORFs, which may be closely related to the characteristics and functions of the tissues. This article provides a basis for subsequent research on smORFs in silkworm, and also hopes to provide a reference point for future research methods for smORFs in other species.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Sistemas de Lectura Abierta/genética , Filogenia
10.
Polymers (Basel) ; 14(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35566909

RESUMEN

The mechanical properties of fiber-reinforced composites are highly dependent on the local fiber orientation. In this study, a low-cost yarn orientation reconstruction approach for the composite components' surface was built, utilizing binocular structured light detection technology to accomplish the effective fiber orientation detection of composite surfaces. It enables the quick acquisition of samples of the revolving body shape without blind spots with an electric turntable. Four collecting operations may completely cover the sample surface, the trajectory recognition coverage rate reached 80%, and the manual verification of the yarn space deviation showed good agreement with the automated technique. The results demonstrated that the developed system based on the proposed method can achieve the automatic recognition of yarn paths of views with different angles, which mostly satisfied quality control criteria in actual manufacturing processes.

11.
RSC Adv ; 12(22): 14190-14196, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558828

RESUMEN

Flexible wearable pressure sensors have attracted special attention in the last 10 years due to their great potential in health monitoring, activity detection and as electronic skin. However, it is still a great challenge to develop high sensitivity, fast response, and good reliable stability through a simple and reproducible large-scale fabrication process. Here, we develop a simple and efficient method to fabricate three-dimensional (3D) light-weight piezoresistive sensing materials by coating multi-walled carbon nanotubes (MWCNTs) on the surface of polyurethane (PU) foam using a dip-spin coating process. The PU foam prepared with SEBS-g-MAH and polyether polyols has high elasticity and good stability in MWCNTs/DMF solution. Subsequently, a piezoresistive sensor was assembled with the prepared MWCNTs/PU composite foam and copper foil electrodes. The assembled pressure sensor has high sensitivity (62.37 kPa-1), a wide working range (0-172.6 kPa, 80% strain), a fast response time (less than 0.6 s), and reliable repeatability (≥2000 cycles). It has shown potential application in real-time human motion detection (e.g., arm bending, knee bending), and monitoring the brightness of LED lights.

12.
Polymers (Basel) ; 14(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35267681

RESUMEN

In recent years, the research of flexible sensors has become a hot topic in the field of wearable technology, attracting the attention of many researchers. However, it is still a difficult challenge to prepare low-cost and high-performance flexible sensors by a simple process. Three-dimensional spacer fabric (SF) are the ideal substrate for flexible pressure sensors due to its good compression resilience and high permeability (5747.7 mm/s, approximately 10 times that of cotton). In this paper, Thermoplastic polyurethane/Polypyrrole/Polydopamine/Space Fabric (TPU/PPy/PDA/SF) composite fabrics were prepared in a simple in-situ polymerization method by sequentially coating polydopamine (PDA) and Polypyrrole (PPy) on the surface of SF, followed by spin-coating of different polymers (thermoplastic polyurethane (TPU), polydimethylsiloxane (PDMS) and Ecoflex) on the PPy/PDA/SF surface. The results showed that the TPU/PPy/PDA/SF pressure sensors prepared by spin-coating TPU at 900 rpm at a concentration of 0.3 mol of pyrrole monomer (py) and a polymerization time of 60 min have optimum sensing performance, a wide working range (0−10 kPa), high sensitivity (97.28 kPa−1), fast response (60 ms), good cycling stability (>500 cycles), and real-time motion monitoring of different parts of the body (e.g., arms and knees). The TPU/PPy/PDA/SF piezoresistive sensor with high sensitivity on a highly permeable spacer fabric base developed in this paper has promising applications in the field of health monitoring.

13.
PeerJ ; 9: e10818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33604192

RESUMEN

Wild (Bombyx mandarina) and domestic silkworms (B. mori) are good models for investigating insect domestication, as 5000 years of artificial breeding and selection have resulted in significant differences between B. mandarina and B. mori. In this study, we improved the genome assemblies to the chromosome level and updated the protein-coding gene annotations for B. mandarina. Based on this updated genome, we identified 68 cytochrome P450 genes in B. mandarina. The cytochrome P450 repository in B. mandarina is smaller than in B. mori. Certain currently unknown key genes, rather than gene number, are critical for insecticide resistance in B. mandarina, which shows greater resistance to insecticides than B. mori. Based on the physical maps of B. mandarina, we located 66 cytochrome P450s on 18 different chromosomes, and 27 of the cytochrome P450 genes were concentrated into seven clusters. KEGG enrichment analysis of the P450 genes revealed the involvement of cytochrome P450 genes in hormone biosynthesis. Analyses of the silk gland transcriptome identified candidate cytochrome P450 genes (CYP306A) involved in ecdysteroidogenesis and insecticide metabolism in B. mandarina.

14.
Materials (Basel) ; 13(13)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635477

RESUMEN

In order to characterize the process-induced distortions of 3D thin shell composites with complex shape, the multilayered biaxial weft knitted (MBWK) fabric reinforced high-performance composite helmet was selected as the research object, and the 3D laser scanning machine was used to scan the helmet surface, then the 3D scanning data was compared with the CAD model to evaluate the deformation. The results and discussion indicated that the conventional method was workable, but the speed of convergence was slow and the calculation results were easy to drop into local optimization. According to detailed analysis, a measurement method focusing on the principle of "Feature Distance" was developed. The measurement results shown that this method can not only give accurate results, but also reduce working procedure and greatly save the computing resources, which is proved to be a feasible approach for the deformation measurement foundation of 3D thin shell textile composites.

15.
Front Microbiol ; 9: 209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503634

RESUMEN

The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.

16.
J Insect Physiol ; 108: 54-60, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29778904

RESUMEN

Lysozymes is a ubiquitous immune effector that is widely distributed in both vertebrates and invertebrates. Previous reports have shown that lysozymes significantly inhibit viral infections in vertebrates. However, the antiviral effects of lysozymes in invertebrates remain unclear. Here, we investigated the role of lysozymes in Bombyx mori (B. mori) response to viral infection by overexpressing B. mori C-lysozyme (BmC-LZM) in larvae and cells. We found that BmC-LZM was up-regulated in cells in response to viral infection. Indeed, the overexpressing of BmC-LZM significantly inhibited viral replication in cells during late-stage infection. However, this effect was reversed by BmC-LZM mRNA. BmC-LZM was successfully overexpressed in B. mori strain 871 using Baculovirus Expression Vector System (BEVS). This overexpression markedly reduced viral proliferation and increased larval survival percentage. Thus, BmC-LZM inhibited viral replication both in vivo and in vitro, indicating that BmC-LZM is involved in the insect immune response to viral infection. Our results provide a basis for further applications of lysozymes.


Asunto(s)
Bombyx/inmunología , Bombyx/virología , Muramidasa/fisiología , Nucleopoliedrovirus/inmunología , Animales , Larva , Replicación Viral
17.
J Biol Eng ; 12: 30, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534200

RESUMEN

BACKGROUND: Silkworm genetic engineering is widely used in gene function, silk engineering and disease-resistant engineering in most of Asia. Some of the earliest promoter elements are used to control the development of silkworm transgenic expression and gene therapy. However, the low expression and specificity of natural promoters limit the applications of genetic engineering. To construct a highly efficient synthetic inducible promoter in the Bombyx mori (Lepidoptera), we analyzed the regulatory elements and functional regions of the B. mori nucleopolyhedrovirus 39 K promoter. RESULTS: Truncated mutation analysis of the 39 K promoter showed that the transcriptional regulatory region spanning positions - 573 to - 274 and + 1 to + 62 are essential for virus-inducible promoter activity. Further investigations using the electrophoretic mobility shift assay revealed that the baculovirus IE-1 protein binds to the 39 K promoter at the - 310 to - 355 region, and transcription activates the expression of 39 K promoter assay. Finally, we successfully constructed a synthetic inducible promoter that increased the virus-inducing activity of other promoters using the baculovirus-inducible transcriptional activation region that binds to specific core elements of 39 K (i.e., spanning the region - 310 to - 355). CONCLUSIONS: In summary, we constructed a novel, synthetic, and highly efficient biological tool, namely, a virus-inducible 39 K promoter, which provides endless possibilities for future research on gene function, gene therapy, and pest control in genetic engineering.

18.
J Phys Chem B ; 121(27): 6708-6720, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28665625

RESUMEN

The complexation of linear double stranded DNA and poly(styrenesulfonate) (PSS) with cationic poly(dimethylamino ethyl methacrylate)-block-poly(n-butyl methacrylate) micelles was compared in aqueous solutions at various pH values and ionic strengths. The complexation process was monitored by turbidimetric titration, as a function of the ratio (N/P) of amine groups in the micelle corona to the number of phosphates (or sulfonates) in the polyanion. The size, structure and stability of the resulting micelleplexes were studied by dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM). In the short chain regime, where the contour lengths of the polyanions are shorter than or comparable to the micelle corona thickness, micelleplexes with DNA oligomers show very similar behavior to complexes with short PSS chains, in terms of titration curves and structural evolution of the complexes as a function of charge ratio. However, in the long chain regime, where the contour length of the polyanion far exceeds the micelle radius, micelleplexes of linear DNA show titration curves shifted toward lower N/P ratios, reduced stability at N/P < 1, and a higher percentage of small complexes at N/P > 1 compared to complexes with long chain PSS. Furthermore, at 1 M ionic strength, the cationic micelles could still complex with long chain PSS, but not with DNA of the same total charge. These differences are attributed to the flexibility difference between the polyanion chains, and possible mechanisms are proposed. This work highlights the importance of chain flexibility in complexation of dissimilar polyelectrolyte pairs, a factor that could therefore help guide the future design of micelleplexes for various applications.


Asunto(s)
ADN/química , Micelas , Polímeros/química , Poliestirenos/química , Cationes/química , Polielectrolitos
19.
Sci Rep ; 7: 46187, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393927

RESUMEN

Research on molecular mechanisms that viruses use to regulate the host apparatus is important in virus infection control and antiviral therapy exploration. Our previous research showed that the Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 localized to dense regions of the cell nucleus and is required for viral DNA replication. Herein, we examined the mechanism of LEF-11 on BmNPV multiplication and demonstrated that baculovirus LEF-11 interacts with Bombyx mori ATAD3A and HSPD1 (HSP60) protein. Furthermore, we showed that LEF-11 has the ability to induce and up-regulate the expression of ATAD3A and HSPD1, phenomena that were both reversed upon knockdown of lef-11. Our findings showed that ATAD3A and HSPD1 were necessary and contributed to BmNPV multiplication in Bombyx mori cells. Moreover, ATAD3A was found to directly interact with HSPD1. Interestingly, ATAD3A was required for the expression of HSPD1, while the knockdown of HSPD1 had no obvious effect on the expression level of ATAD3A. Taken together, the data presented in the current study demonstrated that baculovirus LEF-11 hijacks the host ATPase family members, ATAD3A and HSPD1, efficiently promote the multiplication of the virus. This study furthers our understanding of how baculovirus modulates energy metabolism of the host and provides a new insight into the molecular mechanisms of antiviral research.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Baculoviridae/metabolismo , Bombyx/virología , Interacciones Huésped-Patógeno , Proteínas de Insectos/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Inmunoprecipitación , Unión Proteica , Estabilidad Proteica , Espectrometría de Masas en Tándem
20.
J Phys Chem B ; 121(17): 4631-4641, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28441017

RESUMEN

The role of charge density and charge annealing in polyelectrolyte complexation was investigated through systematic comparison of two micelle-polyelectrolyte systems. First, poly(dimethylaminoethyl methacrylate)-block-poly(styrene) (PDMAEMA-b-PS) micelles were complexed with poly(styrenesulfonate) (PSS) at pH values above and below the pKa of PDMAEMA to investigate the role of charge annealing in the complexation process. Second, complexes of poly(DMAEMA-stat-oligo(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(DMAEMA-stat-OEGMA)-b-PS) micelles with the same PSS at low pH were used to investigate how the complexation process differs when the charged sites are in fixed positions along the polymer chains. Characterization by turbidimetric titration, dynamic light scattering, and cryogenic transmission electron microscopy reveals that whether or not the charge distribution can rearrange during the complexation process significantly affects the structure and stability of the complexes. In complexes of PDMAEMA-b-PS micelles at elevated pH, in which the charge distributions can anneal, the charge sites redistribute along the corona chains upon complexation to favor more fully ion-paired configurations. This promotes rapid rearrangement to single-micelle species when the micelles are in excess but traps complexes formed with PSS in excess. In complexes with static charge distributions introduced by copolymerization of DMAEMA with neutral OEGMA monomers, on the other hand, the opposite is true: in this case, reducing the charge density promotes rearrangement to single-micelle complexes only when the polyanion is in excess. Molecular dynamics simulations show that disruption of the charge density in the corona brush reduces the barrier to rearrangement of individual ion pairs, suggesting that the inability of the brush to rearrange to form fully ion-paired complexes fundamentally alters the kinetics of complex formation and equilibration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA