Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(3): 4553-4568, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785420

RESUMEN

We present and investigate a hybrid laser-based method of surface shaping for damage mitigation on fused silica surfaces. Damage sites were removed and precisely shaped into an optically-benign cone by a procedure of femtosecond laser ablation with a subsequent CO2 laser polishing process. The morphology of the cone rim was quantitatively predicted by a numerical model. Since the heat-affected zone (HAZ) of the laser polishing process was effectively confined by the optimization of ablation parameters, the dimensions of the raised rim were reduced by an order of magnitude. The intensity of the on-axis hotspot was positively related to the dimensions of the raised rim, and thus an inapparent downstream intensification was achieved by the rim reduction. Laser-induced damage threshold (LIDT) of the cone was tested to be ∼14 J/cm2 on the input surface. Therefore, the presented method is appropriate to mitigate damage and also provides a promising approach to manufacturing functional microstructures for high-power applications.

2.
Opt Express ; 29(11): 15980-15994, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154171

RESUMEN

A high-energy, high-beam-quality, high-contrast picosecond optical parametric chirped-pulse amplification (ps-OPCPA) laser system was demonstrated. The pulse from a femtosecond oscillator was stretched to 4 ps, after which it was amplified from 140 pJ to 600 µJ by an 8 ps/6 mJ pump laser in two non-collinear OPCPA stages. The total gain was >106, and the root mean square of the energy stability of the laser system was 1.6% in 10 h. The contrasts of the solid and fiber mode-locked femtosecond oscillator-seeded ps-OPCPA systems were compared, and a signal-to-noise ratio of >1011 was achieved. Using this system, the contrast of the front end in high-power picosecond petawatt laser facility was improved by ∼40 dB to >1011, beyond ∼200 ps ahead of the main pulse with an output level of 60 mJ.

3.
Appl Opt ; 60(5): 1150-1158, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33690544

RESUMEN

We report on an Nd:glass large-mode rod regenerative amplifier with a pulse energy of 125 mJ at 1053 nm. The amplifier contains a linear-type resonator, which is designed in Stability Zone II with a misalignment sensitivity factor of 12.9 m. A method is proposed for analyzing the sensitivity of the mode displacement on the gain media to cavity misalignment, and the optimum solution to compensation for cavity misalignment is obtained and applied to the amplifier. The amplifier exhibits excellent energy stability with a fluctuation of 0.47% (RMS) within 7 h and high spatial beam quality with M2=1.17. The beam pointing stability in the horizontal and vertical axes within 7 h is 2.7 and 3.6 µrad (RMS), respectively.

4.
Appl Opt ; 60(32): 10016-10023, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34807104

RESUMEN

A single-shot measuring apparatus with optical limiting for temporal pulse contrast of kJ-class petawatt lasers in the nanosecond range is proposed. A temporal linear filter comprising an electro-optical switch, a polarizer, a temporal nonlinear filter composed of cascaded SHG crystals, and a dichromatic mirror are, respectively, used as an optical limiting apparatus for contrast measurement of nanosecond and picosecond pulses to improve dynamic range and temporal resolution. The apparatus has been applied to pulse contrast measurements at the SG-II petawatt facility, achieving a high dynamic range of 1010 and a fast time resolution of 107 ps in the 350 ns range. This technique can also be universally applied to the limiting of the main pulse of varying pulse widths to diagnose pre-pulses during generation and transmission.

5.
Appl Opt ; 57(13): 3488-3496, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726518

RESUMEN

We study the feasibility of measuring pulse duration in the far field in high-energy petawatt lasers using single-shot autocorrelation. This single-shot autocorrelation technique makes use of parametric upconversion in media with randomly oriented ferroelectric domains, which supports transverse second-harmonic generation with two counter-propagating fundamental beams. We show that this technique possesses a large time window, capable of measuring pulses with temporal duration ranging from a sub-picosecond to tens of picoseconds. We test the performance of this technique in the presence of multipulse structures, intensity modulations in the near field, and spatial-temporal coupling in fundamental beams. We also investigate the influence of beam pointing discrepancy on the measurement. Our study can serve as a preliminary experiment for robustly characterizing pulse duration in high-energy petawatt lasers.

6.
Appl Opt ; 56(4): 993-998, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158104

RESUMEN

Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.

7.
Appl Opt ; 56(6): 1610-1615, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28234367

RESUMEN

FM-AM modulation of high-power lasers significantly affects laser performance. Therefore, precise measurement of the FM-AM modulation depth is necessary. The subsequent FM-AM modulation generated by group velocity dispersion when the laser pulse propagates through a fiber affects the measurement accuracy. In order to eliminate this effect, a waveform-acquisition module is proposed that converts a broad-spectrum pulse of 1053 nm to a narrow-spectrum pulse of 1550 nm, without affecting the waveform. In addition, a signal-processing algorithm based on the orthogonal matching pursuit method is implemented to remove the sampling noise from the waveform. In this way, the signal-to-noise ratio of the measurement can be readily improved. Both theoretical and experimental results indicate that the proposed FM-AM modulation detection system is effective and economical. It can measure the FM-AM modulation depth precisely, and therefore shows considerable promise for future applications in high-power lasers.

8.
Appl Opt ; 55(29): 8352-8358, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27828086

RESUMEN

FM-to-AM modulation is an important effect in the front end of high-power lasers that influences the temporal profile. Various methods have been implemented in standard-fiber and polarization-maintaining (PM)-fiber front ends to suppress the FM-to-AM modulation. To analyze the modulation in the front end, a theoretical model is established and detailed simulations carried out that show that the polarizing (PZ) fiber, whose fast axis has a large loss, can successfully suppress the modulation. Moreover, the stability of the FM-to-AM modulation can be improved, which is important for the front end to obtain a stable output. To verify the model, a PZ fiber front end is constructed experimentally. The FM-to-AM modulation, without any compensation, is less than 4%, whereas that of the PM fiber front end with the same structure is nearly 20%. The stability of the FM-to-AM modulation depth is analyzed experimentally and the peak-to-peak and standard deviation (SD) are 2% and 0.38%, respectively, over 3 h. The experimental results agree with the simulation results and both prove that the PZ fiber front end can successfully suppress the FM-to-AM conversion. The PZ fiber front end is a promising alternative for improving the performance of the front end in high-power laser facilities.

9.
Appl Opt ; 53(35): 8229-39, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25608064

RESUMEN

A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 µJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 µJ.

10.
Materials (Basel) ; 12(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818014

RESUMEN

In this paper, a numerical model based on the finite-element method for predicting the morphological evolution during CO2 laser ablation on fused silica is developed and examined experimentally. Adopting the optimized parameters that were obtained from the model, a typical cone-shaped multi-stage structure with a diameter of 2 mm and a slope angle of 10.4° was sufficiently polished. Both the roughness and the transparency of the surface structure were significantly improved. The characterized slope angle of the continuous surface is exactly consistent with the predicted value, and the ablation depth is 32 ± 1.247 µm with a deviation of 1.7% (RMS, root mean square). The deviation is principally caused by the neglect of melting displacement in simulation and the irregularity in actual stepping structures. These results indicate that the numerical model can simulate morphological modification of CO2 laser ablation with a high degree of reliability. It could further be used to optimize processing parameters for customizing continuous fused silica surfaces, which could facilitate industrial manufacturing of freeform optics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA