Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 36(12): 3057-3063, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32160744

RESUMEN

Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure. Three microalgae species were used as model cells in the study: Chlorella sp., Nannochloris oculata, and Chlorella pyrenoidosa. First, by mediating biofilm culture conditions, we obtained Chlorella sp. cells with SEs of 40.4 ± 1.5, 44.7 ± 1.0, and 62. 7 ± 1.2 mJ/m2, N. oculata cells with SEs of 47.7 ± 0.5, 41.1 ± 1.0, and 62.6 ± 1.2 mJ/m2, and C. pyrenoidosa cells with SEs of 64.0 ± 0.6, 62.1 ± 0.7, and 62.8 ± 0.6 mJ/m2. Then, based on the characterizations of biofilm structures, we found that cell SE can significantly affect the microalgae biofilm structure. When the cell SEs ranged from 40 to 50 mJ/m2, the microalgae cells formed heterogeneous biofilms with a large number of open voids, and the biofilm porosity was higher than 20%. Alternatively, when the cell SEs ranged from 50 to 65 mJ/m2, the cells formed a flat, homogeneous biofilm with the porosity lower than 20%. Finally, the influencing mechanism of cell SE on biofilm structure was interpreted based on the thermodynamic theory via analyzing the co-adhesion energy between cells. The study has important implications in understanding factors that influence the biofilm structures.


Asunto(s)
Chlorella , Microalgas , Biopelículas , Biomasa , Biotecnología
2.
Langmuir ; 35(9): 3524-3533, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30580526

RESUMEN

Cell adhesion is ubiquitous and plays an important role in various scientific and engineering problems. Herein, a quantitative criterion to predict cell adhesion was proposed by identifying the dominant interaction between microorganisms and abiotic surfaces. According to the criterion, the dominant interaction in cell adhesion could be identified as a Lewis acid-base (AB) interaction or electrostatic (EL) interaction via comparison of two expressions containing the electron-donor characteristics of the microorganism (γmv-) and abiotic surface (γsv-) and their ζ potentials (ζm, ζs). The results revealed that when dominated by the AB interaction, adhesion would decrease with increasing [Formula: see text]. However, when the EL interaction was dominant, adhesion would decrease with increasing (ζm + ζs)2. We have verified the criterion based on the adhesion of microalgae, bacteria, and fungi onto various surfaces obtained via our experiments and available in literature studies. The results demonstrated that the criterion had important implications in the prediction of cell adhesion in various applications.


Asunto(s)
Adhesión Bacteriana/fisiología , Adhesión Celular/fisiología , Modelos Biológicos , Chlorella/fisiología , Enterococcus faecalis/fisiología , Ácidos de Lewis/química , Bases de Lewis/química , Scenedesmus/fisiología , Staphylococcus epidermidis/fisiología , Electricidad Estática , Estramenopilos/fisiología , Propiedades de Superficie
3.
Langmuir ; 35(25): 8308-8315, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31091874

RESUMEN

Because of their atomic thinness, two-dimensional (2D) nanosheets need be bound to a substrate or be dispersed in material in various applications. The surface tension (ST) of a 2D nanosheet is critical for analyzing the physicochemical interactions between 2D nanosheets and other materials. To date, the determination of the ST of 2D nanosheets has relied mainly on the contact angle (CA) method. However, because of the difficulty in measuring the thermodynamically significant Young?s CA, which is the only meaningful CA that can be used to determine the ST, significant differences exist in reported STs of 2D nanosheets. In this study, we obtained such unique Young?s CAs on graphene, boron nitride, molybdenum disulfide, and tungsten disulfide nanosheets by a low-rate advancing contact angle measurement using a rigorously designed experimental setup. By interpreting the CA with Neumann?s equation of state, we determined the STs of these four nanosheets to be 29.7 ? 0.6, 30.9 ? 0.7, 27.8 ? 0.7, and 29.1 ? 0.8 mJ/m2, respectively. The surface energies of these 2D nanosheets were estimated to be in the range 95?120 mJ/m2 by considering the contribution of ST and surface entropy. The accuracy of these determined STs was validated by the exfoliation and dispersion of 2D nanosheets in liquids with a series of STs. The study may have important implications for understanding the physicochemical interactions between 2D nanosheets and other materials and the development of 2D nanosheet-based devices.

4.
Environ Sci Technol ; 49(10): 6164-71, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25898026

RESUMEN

Bacterial adhesion onto solid surfaces is of importance in a wide spectrum of problems, including environmental microbiology, biomedical research, and various industrial applications. Despite many research efforts, present thermodynamic models that rely on the evaluation of the adhesion energy are often elusive in predicting the bacterial adhesion behavior. Here, we developed a new spectrophotometric method to determine the surface free energy (SFE) of bacterial cells. The adhesion behaviors of five bacterial species, Pseudomonas putida KT2440, Salmonella Typhimurium ATCC 14028, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 29212, and Escherichia coli DH5α, onto two model substratum surfaces, i.e., clean glass and silanized glass surfaces, were studied. We found that bacterial adhesion was unambiguously mediated by the SFE difference between the bacterial cells and the solid substratum. The lower the SFE difference, the higher degree of bacterial adhesion. We therefore propose the use of the SFE difference as an accurate and simple thermodynamic measure for quantitatively predicting bacterial adhesion. The methodological advance and thermodynamic simplification in the paper have implications in controlling bacterial adhesion and biofilm formation on solid surfaces.


Asunto(s)
Bacterias/química , Adhesión Bacteriana/fisiología , Espectrofotometría/métodos , Vidrio , Termodinámica
5.
Anal Chem ; 86(18): 9350-5, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25184988

RESUMEN

Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs). We demonstrated the feasibility of this method by sorting model binary cell mixtures of various bacterial species, including Pseudomonas putida KT2440, Enterococcus faecalis ATCC 29212, Salmonella Typhimurium ATCC 14028, and Escherichia coli DH5α. This method can effectively separate 10(10) bacterial cells within 30 min. Individual bacterial species can be sorted with up to 96% efficiency, and the cell viability ratio can be as high as 99%. In addition to its capacity of sorting evenly mixed bacterial cells, we demonstrated the feasibility of this method in selecting and enriching cells of minor populations in the mixture (presenting at only 1% in quantity) to a purity as high as 99%. This SFE-activated method may be used as a stand-alone method for quickly sorting a large quantity of bacterial cells or as a prescreening tool for microbial discrimination. Given its advantages of label-free, high-throughput, low cost, and simplicity, this SFE-activated cell sorting method has potential in various applications of sorting cells and abiotic particles.


Asunto(s)
Bacterias/aislamiento & purificación , Separación Celular , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecalis/fisiología , Escherichia coli/aislamiento & purificación , Escherichia coli/fisiología , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente , Pseudomonas putida/aislamiento & purificación , Pseudomonas putida/fisiología , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/fisiología , Espectrofotometría , Electricidad Estática , Tensión Superficial , Termodinámica
6.
Anal Chem ; 86(17): 8751-6, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25121721

RESUMEN

Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.


Asunto(s)
Chlorella/metabolismo , Espectrofotometría , Fuentes de Energía Bioeléctrica , Chlorella/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Poliestirenos/química , Propiedades de Superficie , Termodinámica
7.
Adv Mater ; 36(3): e2310312, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991469

RESUMEN

Photothermal superhydrophobic surfaces are one of the most promising anti-/deicing materials, yet they are limited by the low energy density and intermittent nature of solar energy. Here, a coupling solution based on microencapsulated phase change materials (MPCMs) that integrates photothermal effect and phase change thermal storage is proposed. Dual-shell octahedral MPCMs with Cu2 O as the first layer and 3D Cu2-x S as the second layer for the first time is designed. By morphology and phase manipulation of the Cu2-x S shell, the local surface plasmonic heating modulation of MPCMs is realized, and the MPCM reveals full-spectrum high absorption with a photothermal conversion efficiency up to 96.1%. The phase change temperature and enthalpy remain in good consistency after 200 cycles. Multifunctional photothermal phase-change superhydrophobic composite coatings are fabricated by combining the hydrolyzed and polycondensation products of octadecyl trichlorosilane and the dual-shell MPCM. The multifunctional coatings exhibit excellent anti-/deicing performance under low temperature and high humidity conditions. This work not only provides a new approach for the design of high-performance MPCMs but also opens up an avenue for the anti-icing application of photothermal phase-change superhydrophobic composite coatings.

8.
J Colloid Interface Sci ; 670: 103-113, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759265

RESUMEN

The design and development of high-performance and long-life Pt-free catalysts for the oxygen reduction reaction (ORR) is of great important with respect to metal-air batteries and fuel cells. Herein, a new low-cost covalent organic frameworks (COFs)-derived CoNC single-atoms catalyst (SAC) is fabricated and compared with the engineered nanoparticle (NP) counterpart for ORR activity. The ORR performance of the SAC catalyst (CoSA@NC) surpasses the NP counterpart (CoNP-NC) under the same operation condition. CoSA@NC also achieves improved long-term durability and better methanol tolerance compared with the Pt/C. The zinc-air battery assembled by the CoSA@NC cathode delivers a higher power density and energy density than that of commercial Pt/C catalyst. Molecular dynamics (MD) is performed to explain the spontaneous evolution from clusters to single-atom metal configuration and density functional theory (DFT) calculations find that CoSA@NC possesses lower d-band center, resulting in weaker interaction between the surface and the O-containing intermediates. Consequently, the reductive desorption of OH*, the rate-determine step, is further accelerated.

9.
Chemosphere ; 349: 140805, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040255

RESUMEN

Using microalgae to treat coking wastewater has important application prospects and environmental significance. Previous studies have suggested that phycoremediation of pollutants from coking wastewater is feasible and can potentially enhance biodiesel production. This work investigates the effects of phenol in coking wastewater on C. pyrenoidosa and S. obliquus growth, photosynthesis activity, and intracellular components. The results indicated that when the phenol concentration was lower than 300 mg L-1, both microalgae maintained good photosynthetic and physiological activity, with a maximum quantum yield potential ranging from 0.6 to 0.7. At the phenol concentration of 300 mg L-1, the biomass of C. pyrenoidosa was 2.4 times that of the control group. For S. obliquus, at the phenol concentration of 150 mg L-1, the biomass was approximately 0.85 g L-1, which increased by 68% than that of the control group (0.58 g L-1). The lipid content in both microalgae increased with the phenol concentrations, with the maximum content exceeding 40%. The optimal phenol concentrations for C. pyrenoidosa and S. obliquus growth were determined to be 246.18 and 152.73 mg L-1, respectively, based on a developed kinetic model. This work contributes to further elucidating the effects of phenol on microalgae growth, photosynthesis, and intracellular components, and suggests that using microalgae to treat phenol-containing coking wastewater for producing biofuel is not only environmentally friendly but also holds significant energy promise.


Asunto(s)
Chlorella , Coque , Microalgas , Aguas Residuales , Biocombustibles , Fenol , Fenoles , Biomasa
10.
Bioresour Technol ; 393: 130052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995875

RESUMEN

Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 âˆ¼ 10 µm accounted for 96 % and 68 %, respectively). By analyzing morphologies and surface properties of cells, it was found that cells with small size, spherical shape, and reduced surface polymers could hinder the cell-clusters formation, thereby promoting biomass yields. The study provides new insights into choosing cocultured microalgae species for improving the biomass yield of biofilm via manipulating biofilm microstructures.


Asunto(s)
Microalgas , Técnicas de Cocultivo , Biomasa , Propiedades de Superficie , Biopelículas
11.
Phys Rev E ; 107(4-2): 045303, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198774

RESUMEN

Research on conjugated radiation-conduction (CRC) heat transfer in participating media is of vital scientific and engineering significance due to its extensive applications. Appropriate and practical numerical methods are essential to forecast the temperature distributions during the CRC heat-transfer processes. Here, we established a unified discontinuous Galerkin finite-element (DGFE) framework for solving transient CRC heat-transfer problems in participating media. To overcome the mismatch between the second-order derivative in the energy balance equation (EBE) and the DGFE solution domain, we rewrite the second-order EBE as two first-order equations and then solve both the radiative transfer equation (RTE) and the EBE in the same solution domain, resulting in the unified framework. Comparisons between the DGFE solutions with published data confirm the accuracy of the present framework for transient CRC heat transfer in one- and two-dimensional media. The proposed framework is further extended to CRC heat transfer in two-dimensional anisotropic scattering media. Results indicate that the present DGFE can precisely capture the temperature distribution at high computational efficiency, paving the way for a benchmark numerical tool for CRC heat-transfer problems.

12.
Environ Sci Pollut Res Int ; 30(59): 124010-124027, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996578

RESUMEN

This paper develops a process-level carbon emission calculation model for iron and steel enterprises through the carbon emission mechanism of the whole production process. The relationship between material, energy and carbon flows is considered and combined. The carbon emissions of enterprises are divided into industrial emissions and combustion emissions, and the indirect emissions of purchased intermediate products and electricity purchased from the grid are also considered. Carbon emission targets and corresponding emission reduction strategies are formulated at the enterprise and process levels. For example, consider an iron and steel enterprise. The different types of carbon emissions are accounted for, with their reduction potential analysed based on the carbon material flow analysis method. The results show that the carbon emission of this enterprise is 1930.87 kgCO2/t (CS), and the combustion emission caused by energy flow is the main contributor to the enterprise's carbon emission, accounting for 57.02% of the total emission. The carbon emission during iron-making accounts for 69.06% of the entire process and is critical in any carbon emission reduction of the enterprise. Among them, process emissions from the blast furnace process account for 81.79% of industrial emissions of the whole process, which is 356.51 kgCO2/t (CS), and is the main challenge of low carbon transformation in this extensive process. This study highlights that increasing the integrated steel-making scrap ratio and electric furnace steel production can break through the existing emission reduction limits. A 65.02% carbon emission reduction can be achieved, and using green electricity can reduce emissions by 24.15%. Reasonably determining the amount of purchased coke and paying attention to the high-value recycling of byproduct gas resources in the plant are essential to achieve low-carbon economic development of steel.


Asunto(s)
Dióxido de Carbono , Acero , Dióxido de Carbono/análisis , Acero/análisis , Carbono/análisis , Hierro/análisis , Reciclaje , China
13.
ACS Appl Mater Interfaces ; 15(36): 43159-43168, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651452

RESUMEN

Thermally conductive cellulose-based composites have great application potential in the thermal management of portable and wearable electronic devices. In this work, cellulose-based composites with excellent mechanical and thermal properties were developed by using lysozyme-modified graphene nanoplatelets (LmGNP), epichlorohydrin (ECH), and hydrolyzed cellulose via forming strong double-cross-linked interface interactions, including the hydrogen bond network generated between LmGNP and cellulose and the chemical cross-link of ECH. As for the composites containing 8 wt % LmGNP, the in-plane thermal conductivity was 3.341 W·m-1K-1, while the tensile stress was 114.60 MPa, which increased by 297.3 and 146.2%, respectively, compared to pure cellulose. Along with the good stability, insulation, and lightweight properties, the fabricated composites have the potential to become a promising heat dissipation material for wearable electronic devices.

14.
J Colloid Interface Sci ; 583: 563-570, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039857

RESUMEN

Biofilm structure plays an important role in microalgae biofilm-based culture. This work aims to understand microalgal biofilm structures formed under different light conditions. Here, Scenedesmus obliquus was biofilm cultured under the light spectra of white, blue, green, and red, and the photoperiods of 5:5 s, 30:30 min, and 12:12 h (light : dark period). Biofilms were observed with confocal laser scanning microscopes and profilometry, then the porosity and roughness of biofilm were determined. We found that cells under white light formed a heterogeneous biofilm with many voids, high porosity, and roughness. While under red and blue lights, cells formed homogeneous biofilms with low porosity. Biofilm structures formed under different photoperiods were different. The mechanism of forming different biofilm structures under different light conditions was interpreted from the aspect of cell-cell interactions. Moreover, the results revealed that biomass accumulation increased with the increasing biofilm porosity due to the high effective diffusion coefficient.


Asunto(s)
Microalgas , Biopelículas , Biomasa , Comunicación Celular , Luz
15.
ACS Omega ; 5(42): 27413-27424, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33134704

RESUMEN

In conventional lime calcination processes, because of fuel combustion in the kiln, the carbon dioxide (CO2) from limestone decomposition is mixed with the flue gas, which results in energy requirement for gas separation in the carbon capture process. Here, a novel lime calcination system with carrier gas (CO2) heating and air cooling is proposed to avoid the mixing problem of the CO2 and the flue gas. This system consists of a new shaft kiln with four processing zones and a furnace system, where fuel combustion, limestone reaction, and lime cooling are carried out separately. Therefore, while obtaining qualified lime products, the CO2 from limestone decomposition can be captured without a gas separation process, which accounts for 70% of the total carbon emission in lime production. Furthermore, a thermal-mass balance model was developed for the new system. Based on the model calculation, the energy consumption level of the new system was clarified via a case study. Moreover, parametric analyses were performed to examine the influence of the coefficient of excess air, the coefficient of lost carrier gas, and the calorific value of coal gas on the system performance such as the energy consumption and the CO2 captured.

16.
Colloids Surf B Biointerfaces ; 177: 479-486, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30807962

RESUMEN

Microalgae adhesion plays a critical role in developing effective photobioreactors for large-scale production of microalgae biofuel. This study focused on elucidating the influencing mechanism of liquid medium pH on microalgae adhesion by identifying the dominant interactions between cell and substratum using a criterion. Herein, the adhesion of three microalgae onto two substrata at a series of pH was observed using a flow chamber. The results indicated that the adhesion of freshwater Chlorella sp. onto PVC and glass and marine Chlorella sp. and N. oculata onto glass decreased with increasing pH, because these adhesions were dominated by the EL interaction, and the pH would influence the adhesion primarily by affecting the ζ potential of the cell and substratum. Whereas, the adhesion of marine Chlorella sp. and N. oculata onto PVC increased with increasing pH, because these adhesions were dominated by Lewis acid-base (AB) interaction, and the pH would influence the adhesion primarily by affecting the components of surface free energy of cell. The study demonstrated that the influencing mechanism of pH on adhesion can be conclusively elucidated by identifying the dominant interaction between the cell and the surface, and may have significant implications for predicting cell adhesion in various applications.


Asunto(s)
Adhesión Celular , Chlorella/química , Microalgas/citología , Concentración de Iones de Hidrógeno , Microalgas/química , Tamaño de la Partícula , Propiedades de Superficie
17.
Nanomaterials (Basel) ; 9(9)2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31540151

RESUMEN

With the rapid development of electronics and portable devices, polymer nanocomposites with high through-plane thermal conductivity (TC) are urgently needed. In this work, we fabricated graphene nanosheets-perfluoroalkoxy (GNs-PFA) composite sheets with high through-plane TCs via hot-pressing followed by mechanical machining. When the GNs content exceeded 10 wt%, GNs were vertically aligned in the PFA matrix, and the through-plane TCs of nanocomposites were 10-15 times higher than their in-plane TCs. In particular, the composite with 30 wt% GNs exhibited a through-plane TC of 25.57 W/(m·K), which was 9700% higher than that of pure PFA. The composite with 30 wt% GNs was attached to the surface of a high-power light-emitting diode (LED) to assess its heat-dissipation capability. The composite with vertically aligned GNs lowered the LED surface temperature by approximately 16 °C compared with pure PFA. Our facile, low-cost method allows for the large-scale production of GNs-PFA nanocomposites with high through-plane TCs, which can be used in various thermal-management applications.

18.
Polymers (Basel) ; 11(10)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658674

RESUMEN

Thermal management has become a critical challenge in electronics and portable devices. To address this issue, polymer composites with high thermal conductivity (TC) and low dielectric property are urgently needed. In this work, we fabricated perfluoroalkoxy (PFA) composite with high anisotropic TC and low dielectric constant by aligning boron nitride nanosheets (BNNs) via hot pressing. We characterized the thermal stability, microstructure, in-plane and through-plane TCs, heat dissipation capability, and dielectric property of the composites. The results indicate that the BNNs-PFA composites possessed good thermal stability. When the BNNs content was higher than 10 wt %, the BNNs were well layer aligned in the PFA matrix, and the composites showed obvious anisotropic TC. The in-plane TC and through-plane TCs of 30 wt % BNNs-PFA composite were 4.65 and 1.94 W m-1 K-1, respectively. By using the composite in thermal management of high-power LED, we found that alignment of BNNs in composite significantly improves the heat dissipation capability of composite. In addition, the composites exhibited a low dielectric property. This study shows that hot pressing is a facile and low-cost method to fabricate bulk composite with anisotropic TC, which has wide applications in electronic packaging.

19.
Nanoscale Res Lett ; 13(1): 241, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120630

RESUMEN

Graphene nanoplatelets (GNPs) can be produced by exfoliating graphite in solvents via high-power tip sonication. In order to understand the influence of tip sonication parameters on graphite exfoliation to form GNPs, three typical flaked graphite samples were exfoliated into GNPs via tip sonication at power of 60, 100, 200, or 300 W for 10, 30, 60, 90, 120, or 180 min. The concentration of GNP dispersions, the size and defect density of the produced GNPs, and the sedimentation behavior of GNP dispersions produced under various tip sonication parameters were determined. The results indicated that the concentration of the GNP dispersions was proportional to the square root of sonication energy input (the product of sonication power and time). The size and ID/IG values (determined by Raman spectrum) of GNPs produced under various tip sonication powers and times ranged from ~ 1 to ~ 3 µm and ~ 0.1 to ~ 0.3, respectively, which indicated that all the produced GNPs were of high quality. The sedimentation behavior of GNP dispersions showed that the dispersions were favorably stable, and the concentration of each GNP dispersion was ~ 70% of its initial concentration after sedimentation for 96 h. Moreover, the TEM images and electron diffraction patterns were used to confirm that the produced GNPs were few-layer. This study has important implications for selecting the suitable tip sonicating parameters in exfoliating graphite into GNPs.

20.
RSC Adv ; 8(21): 11367-11374, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35542818

RESUMEN

Thermal properties including the crystallization behavior, thermal stability and thermal conductivity for a series of graphene nanoplatelet (GNP)-polytetrafluoroethylene (PTFE) nanocomposites were studied. The GNP-PTFE nanocomposites were fabricated via solvent-assisted blending followed by cold-pressing and sintering. The results indicated that the GNP-PTFE nanocomposites retained the good thermal stability of the PTFE matrix, and possessed better crystallization and much higher thermal conductivity than pure PTFE. The thermal conductivity of PTFE nanocomposites with a GNP mass fraction of 20% could reach 4.02 W (m K)-1, which was increased by 1300% compared with pure PTFE. Additionally, a theoretical model was proposed to analyze the thermal conductivity of GNP-PTFE nanocomposites. It is demonstrated that adding GNPs into PTFE homogeneously can effectively improve the thermal properties of the nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA