Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 601(7894): 531-536, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847568

RESUMEN

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2-8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9-15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.


Asunto(s)
Frío , Transición de Fase , Termodinámica
2.
Nature ; 574(7779): 505-510, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645734

RESUMEN

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8-14 for this specific computational task, heralding a much-anticipated computing paradigm.

3.
New Phytol ; 237(4): 1146-1153, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36073550

RESUMEN

Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies.


Asunto(s)
Arabidopsis , Comovirus , Comovirus/genética , Arabidopsis/genética , ARN Viral/genética , Enfermedades de las Plantas
4.
Opt Express ; 31(7): 11261-11273, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37155766

RESUMEN

To study nanostructures on substrates, surface-sensitive reflection-geometry scattering techniques such as grazing incident small angle X-ray scattering are commonly used to yield an averaged statistical structural information of the surface sample. Grazing incidence geometry can probe the absolute three-dimensional structural morphology of the sample if a highly coherent beam is used. Coherent surface scattering imaging (CSSI) is a powerful yet non-invasive technique similar to coherent X-ray diffractive imaging (CDI) but performed at small angles and grazing-incidence reflection geometry. A challenge with CSSI is that conventional CDI reconstruction techniques cannot be directly applied to CSSI because the Fourier-transform-based forward models cannot reproduce the dynamical scattering phenomenon near the critical angle of total external reflection of the substrate-supported samples. To overcome this challenge, we have developed a multislice forward model which can successfully simulate the dynamical or multi-beam scattering generated from surface structures and the underlying substrate. The forward model is also demonstrated to be able to reconstruct an elongated 3D pattern from a single shot scattering image in the CSSI geometry through fast-performing CUDA-assisted PyTorch optimization with automatic differentiation.

5.
Plant J ; 105(4): 957-977, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33180340

RESUMEN

Natural plants must actively allocate their limited resources for survival and reproduction. Although vegetative growth, sexual reproduction, asexual reproduction and defense are all basic processes in the life cycle of plants, the strategies used to allocate resources between these processes are poorly understood. These processes are conspicuous in naturally grown Aconitum kusnezoffii Reichb., which makes it a suitable study subject. Here, the morphology, dry matter, total organic carbon, total nitrogen and aconitum alkaloid levels of shoot, principal root (PR) and lateral roots were measured throughout the growing season. Then, transcriptome and metabolite content analyses were performed. We found that vegetative growth began first. After vegetative growth ceased, sexual development began. Flower organ development was accompanied by increased photosynthesis and the PR consumed temporarily stored resources after flower formation. Asexual propagule development initiated earlier than sexual reproduction and kept accumulating resources after that. Development was slow before flower formation, mainly manifesting as increasing length; then, after flower formation it accelerated via enhanced material transport and accumulation. Defense compounds were maintained at low levels before flowering. In particular, the turnover of defense compounds was enhanced before and after flower bud emergence, providing resources for other processes. After flower formation, defense compounds were accumulated. The pattern found herein provides a vivid example for further studies on resource allocation strategies. The exciting finding that the PR, as a more direct storage site for photosynthate, is a buffer unit for resources, and that defense compounds can be reused for other processes, suggests a need to explore potential mechanisms.


Asunto(s)
Aconitum/fisiología , Reproducción Asexuada , Aconitum/crecimiento & desarrollo , Aconitum/metabolismo , Carbono/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Flores/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Reproducción/fisiología , Reproducción Asexuada/fisiología , Estaciones del Año
6.
J Synchrotron Radiat ; 29(Pt 3): 721-731, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511005

RESUMEN

Bayesian-inference-based approaches, in particular the random-walk Markov Chain Monte Carlo (MCMC) method, have received much attention recently for X-ray scattering analysis. Hamiltonian MCMC, a state-of-the-art development in the field of MCMC, has become popular in recent years. It utilizes Hamiltonian dynamics for indirect but much more efficient drawings of the model parameters. We described the principle of the Hamiltonian MCMC for inversion problems in X-ray scattering analysis by estimating high-dimensional models for several motivating scenarios in small-angle X-ray scattering, reflectivity, and X-ray fluorescence holography. Hamiltonian MCMC with appropriate preconditioning can deliver superior performance over the random-walk MCMC, and thus can be used as an efficient tool for the statistical analysis of the parameter distributions, as well as model predictions and confidence analysis.

7.
J Synchrotron Radiat ; 29(Pt 4): 1122-1129, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787580

RESUMEN

pyXPCSviewer, a Python-based graphical user interface that is deployed at beamline 8-ID-I of the Advanced Photon Source for interactive visualization of XPCS results, is introduced. pyXPCSviewer parses rich X-ray photon correlation spectroscopy (XPCS) results into independent PyQt widgets that are both interactive and easy to maintain. pyXPCSviewer is open-source and is open to customization by the XPCS community for ingestion of diversified data structures and inclusion of novel XPCS techniques, both of which are growing demands particularly with the dawn of near-diffraction-limited synchrotron sources and their dedicated XPCS beamlines.

8.
Angew Chem Int Ed Engl ; 61(45): e202212089, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36102873

RESUMEN

Different from organic dye/quantum dot possessing one luminescent center, upconversion luminescence (UCL) is actually a statistic of temporal behaviors of countless individual activators. Our experimental results have shown that the rise and decay dynamics of UCL is directly associated with the relative contribution of sensitizer-to-activator energy transfer and energy migration among sensitizers, which can be physically modulated by simply tuning the excitation laser. Therefore, dynamic UCL with record-wide 20-fold lifetime, ≈70-fold red-to-green intensity ratio, and reversibly definable emission color is easily realized by just modulating the excitation laser. Moreover, this generally applicable strategy only requires a simplest-possible UCL system whereas prevalent material engineering such as complicated composition design, sophisticated core-shell construction, or tedious chemical synthesis, is no longer needed.

9.
Soft Matter ; 16(4): 983-989, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31851201

RESUMEN

The structure and dynamics of lipid membranes in the presence of extracellular macromolecules are critical for cell membrane functions and many pharmaceutical applications. The pathogen virulence-suppressing end-phosphorylated polyethylene glycol (PEG) triblock copolymer (Pi-ABAPEG) markedly changes the interactions with lipid vesicle membranes and prevents PEG-induced vesicle phase separation in contrast to the unphosphorylated copolymer (ABAPEG). Pi-ABAPEG weakly absorbs on the surface of lipid vesicle membranes and slightly changes the structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) unilamellar vesicles at 37 °C, as evidenced by small angle neutron scattering. X-ray reflectivity measurements confirm the weak adsorption of Pi-ABAPEG on DMPC monolayer, resulting in a more compact DMPC monolayer structure. Neutron spin-echo results show that the adsorption of Pi-ABAPEG on DMPC vesicle membranes increases the membrane bending modulus κ.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Fosfatidilcolinas/química , Membrana Celular/ultraestructura , Dimiristoilfosfatidilcolina/química , Glicerilfosforilcolina/química , Humanos , Membrana Dobles de Lípidos/metabolismo , Polietilenglicoles/química , Polímeros/química , Dispersión del Ángulo Pequeño , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
10.
Phys Rev Lett ; 122(10): 107802, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932658

RESUMEN

We investigated the dynamics of polymer-grafted gold nanoparticles loaded into polymer melts using x-ray photon correlation spectroscopy. For low molecular weight host matrix polymer chains, normal isotropic diffusion of the gold nanoparticles is observed. For larger molecular weights, anomalous diffusion of the nanoparticles is observed that can be described by ballistic motion and generalized Lévy walks, similar to those often used to discuss the dynamics of jammed systems. Under certain annealing conditions, the diffusion is one-dimensional and related to the direction of heat flow during annealing and is associated with an dynamic alignment of the host polymer chains. Molecular dynamics simulations of a single gold nanoparticle diffusing in a partially aligned polymer network semiquantitatively reproduce the experimental results to a remarkable degree. The results help to showcase how nanoparticles can under certain circumstances move rapidly in polymer networks.

11.
J Surg Res ; 235: 569-577, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30691844

RESUMEN

BACKGROUND: Acidic preconditioning (APC) has been demonstrated to protect against ischemia-reperfusion (IR)-induced lung injury, which could occur during lung transplantation or cardiopulmonary bypass. However, the pathophysiological mechanisms underlying IR lung injury and APC protection are not completely understood. The key factors responsible for the protective effects of APC are not clear. In this study, bioinformatics was used to predict the potential key factor in IR lung injury and explore the important mediator of the APC protective effect in IR lung injury. METHODS: First, we screened GSE6730, which is related to both lung injury and IR in Gene Expression Omnibus, and STRING was used later to select the genes in GSE6730 needed in the future. Animal models were established and classified to validate the effect of matrix metalloproteinase 9 (MMP-9) on lung injury after IR by adding a selective inhibitor (4-phenoxyphenylsulfonyl) methylthiirane, MMP-9 inhibitor. Next, for better understanding of APC inhibition of the expression of MMP-9 in lung injury, assessment of lung tissues, Western blot analysis, and RNA extraction and reverse transcription quantitative polymerase chain reaction were conducted. RESULTS: MMP-9 was identified to be overexpressed after IR according to the analysis on GSE67370. MMP-9 was an unknown gene in relation to acute lung injury and found to be associated with interleukin (IL)-1B, IL-6, and IL-8. The expressions of these inflammatory factors, including MMP-9, were all elevated in IR. Furthermore, lung injury was ameliorated, and the level of MMP-9 was lower when an MMP-9 inhibitor, (4-phenoxyphenylsulfonyl) methylthiirane, was added. Compared with group IR, APC reversed the ischemia-induced lung injury, and the level of MMP-9 was lower, and the concentrations of IL-1ß, IL-6, and IL-8 were decreased. CONCLUSIONS: Our findings reveal a novel mechanism indicating that IR induces higher expression of MMP-9 in lung injury by increasing the expression of inflammation-related factors. APC might protect against IR lung injury by inhibiting the expression of MMP-9.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Precondicionamiento Isquémico/métodos , Metaloproteinasa 9 de la Matriz/metabolismo , Daño por Reperfusión/prevención & control , Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/etiología , Animales , Biología Computacional , Masculino , Distribución Aleatoria , Ratas Wistar , Daño por Reperfusión/enzimología , Daño por Reperfusión/etiología
12.
J Synchrotron Radiat ; 25(Pt 4): 1261-1270, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979189

RESUMEN

Xi-cam is an extensible platform for data management, analysis and visualization. Xi-cam aims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core of Xi-cam is an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. With Xi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data. Xi-cam's plugin-based architecture targets cross-facility and cross-technique collaborative development, in support of multi-modal analysis. Xi-cam is open-source and cross-platform, and available for download on GitHub.

13.
Phys Rev Lett ; 120(2): 028002, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376723

RESUMEN

Using high-resolution in situ small angle x-ray scattering in conjunction with oscillatory shear on highly monodisperse silica suspensions, we demonstrate that an order-to-disorder transition leads to a dynamic shear thickening in a lower stress regime than the standard steady shear thickening. We show that the order-to-disorder transition is controlled by strain, which is distinguishably different from steady shear thickening, which is a stress-related phenomenon. The appearance of this two-step shear thinning and thickening transition is also influenced by the particle size, monodispersity, and measurement conditions (i.e., oscillatory shear versus steady shear). Our results show definitively that the order-to-disorder transition-induced thickening is completely unrelated to the mechanism that drives steady shear thickening.

14.
Langmuir ; 34(33): 9634-9644, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30036069

RESUMEN

The search continues for means of making quick determinations of the efficacy of a coating for protecting a metal surface against corrosion. One means of reducing the time scale needed to differentiate the performance of different coatings is to draw from nanoscale measurements inferences about macroscopic behavior. Here we connect observations of the penetration of water into plasma polymerized (PP) protective coatings and the character of the interface between the coating and an oxide-coated aluminum substrate or model oxide-coated silicon substrate to the macroscopically observable corrosion for those systems. A plasma polymerized film from hexamethyldisiloxane (HMDSO) monomer is taken as illustrative of a hydrophobic coating, while a PP film from maleic anhydride (MA) is used as a characteristically hydrophilic coating. The neutron reflectivity (NR) of films on silicon oxide coated substrates shows that water moves more readily through the hydrophilic PP-MA film. Off-specular X-ray scattering indicates the PP-MA film on aluminum is less conformal with the substrate than is the PP-HMDSO film. Measurements with infrared-visible sum frequency generation spectroscopy (SFG), which probes the chemical nature of the interface, make clear that the chemical interactions between coating and aluminum oxide are disrupted by interfacial water. With this water penetration and interface disruption, macroscopic corrosion can occur much more rapidly. An Al panel coated with PP-MA corrodes after 1 day in salt spray, while a similarly thin (∼30 nm) PP-HMDSO coating protects an Al panel for a period on the order of one month.

15.
Nat Mater ; 14(9): 912-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26053763

RESUMEN

Self-assembly of nanoparticles at fluid interfaces has emerged as a simple yet efficient way to create two-dimensional membranes with tunable properties. In these membranes, inorganic nanoparticles are coated with a shell of organic ligands that interlock as spacers and provide tensile strength. Although curvature due to gradients in lipid-bilayer composition and protein scaffolding is a key feature of many biological membranes, creating gradients in nanoparticle membranes has been difficult. Here, we show by X-ray scattering that nanoparticle membranes formed at air/water interfaces exhibit a small but significant ∼6 Šdifference in average ligand-shell thickness between their two sides. This affects surface-enhanced Raman scattering and can be used to fold detached free-standing membranes into tubes by exposure to electron beams. Molecular dynamics simulations elucidate the roles of ligand coverage and mobility in producing and maintaining this asymmetry. Understanding this Janus-like membrane asymmetry opens up new avenues for designing nanoparticle superstructures.

16.
Phys Rev Lett ; 117(18): 180402, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27835027

RESUMEN

The tunneling between the two ground states of an Ising ferromagnet is a typical example of many-body tunneling processes between two local minima, as they occur during quantum annealing. Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases is O(Δ^{2}), where Δ is the tunneling splitting (or equivalently the minimum spectral gap). An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, we obtain a quadratic speedup for QMC simulations, and achieve linear scaling in Δ. We provide a physical understanding of these results and their range of applicability based on an instanton picture.

17.
Soft Matter ; 12(24): 5372-7, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27222250

RESUMEN

The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. The portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. Since these hybrid samples containing a covalently tethered layer at the bottom do not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates, they provide a route for tailoring polymer layer surface properties such as wetting, adhesion and friction.

18.
Phys Chem Chem Phys ; 18(2): 1225-32, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26661405

RESUMEN

Ternary lipid mixtures incorporating cholesterol are well-known to phase separate into liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. In multilayers of these systems, the laterally phase separated domains register in columnar structures with different bilayer periodicities, resulting in hydrophobic mismatch energies at the domain boundaries. In this paper, we demonstrate via synchrotron-based X-ray diffraction measurements that the system relieves the hydrophobic mismatch at the domain boundaries by absorbing larger amounts of inter-bilayer water into the L(d) phase with lower d-spacing as the relative humidity approaches 100%. The lamellar repeat distance of the L(d) phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces a surprisingly long-range effect. We also demonstrate that the d-spacings of the lipid multilayers at 100% relative humidity do not change when bulk water begins to condense on the sample.


Asunto(s)
Colesterol/química , Humedad , Lípidos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie
19.
Phys Chem Chem Phys ; 17(5): 3570-6, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25537423

RESUMEN

In this study, we have designed a compact sample chamber that can achieve accurate and continuous control of the relative humidity (RH) in the vicinity of 100%. A 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayer can be used as a humidity sensor by measuring its inter-layer repeat distance (d-spacing) via X-ray diffraction. We convert from DOPC d-spacing to RH according to a theory given in the literature and previously measured data of DOPC multilamellar vesicles in polyvinylpyrrolidone (PVP) solutions. This curve can be used for calibration of RH close to 100%, a regime where conventional sensors do not have sufficient accuracy. We demonstrate that this control method can provide RH accuracies of 0.1 to 0.01%, which is a factor of 10-100 improvement compared to existing methods of humidity control. Our method provides fine tuning capability of RH continuously for a single sample, whereas the PVP solution method requires new samples to be made for each PVP concentration. The use of this cell also potentially removes the need for an X-ray or neutron beam to pass through bulk water if one wishes to work close to biologically relevant conditions of nearly 100% RH.

20.
Nano Lett ; 13(3): 1041-6, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23360394

RESUMEN

The pathway of interfacial self-assembly of large-scale, highly ordered 2D nanoparticle/polymer monolayer or bilayer arrays from a toluene solution at an air/water interface was investigated using grazing-incidence small-angle scattering at a synchrotron source. Interfacial-assembly of the ordered nanoparticle/polymer array was found to occur through two stages: formation of an incipient randomly close-packed interfacial monolayer followed by compression of the monolayer to form a close-packed lattice driven by solvent evaporation from the polymer. Because the nanoparticles are hydrophobic, they localize exclusively to the polymer-air interface during self-assembly, creating a through thickness asymmetric film as confirmed by X-ray reflectivity. The interfacial self-assembly approach can be extended to form binary NP/polymer arrays. It is anticipated that by understanding the interfacial self-assembly pathway, this simple evaporative procedure could be conducted as a continuous process amenable to large area nanoparticle-based manufacturing needed for emerging energy technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA