RESUMEN
Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.
Asunto(s)
Lagartos , Melaninas , Animales , Melaninas/genética , Lagartos/genética , Pez Cebra , Regulación de la Temperatura Corporal/genética , Pigmentación de la Piel/genética , ColorRESUMEN
Ongoing climate change has profoundly affected global biodiversity, but its impacts on populations across elevations remain understudied. Using mechanistic niche models incorporating species traits, we predicted ecophysiological responses (activity times, oxygen consumption and evaporative water loss) for lizard populations at high-elevation (<3600 m asl) and extra-high-elevation (≥3600 m asl) under recent (1970-2000) and future (2081-2100) climates. Compared with their high-elevation counterparts, lizards from extra-high-elevation are predicted to experience a greater increase in activity time and oxygen consumption. By integrating these ecophysiological responses into hybrid species distribution models (HSDMs), we were able to make the following predictions under two warming scenarios (SSP1-2.6, SSP5-8.5). By 2081-2100, we predict that lizards at both high- and extra-high-elevation will shift upslope; lizards at extra-high-elevation will gain more and lose less habitat than will their high-elevation congeners. We therefore advocate the conservation of high-elevation species in the context of climate change, especially for those populations living close to their lower elevational range limits. In addition, by comparing the results from HSDMs and traditional species distribution models, we highlight the importance of considering intraspecific variation and local adaptation in physiological traits along elevational gradients when forecasting species' future distributions under climate change.
Asunto(s)
Cambio Climático , Lagartos , Animales , Lagartos/fisiología , Aclimatación , Adaptación Fisiológica , EcosistemaRESUMEN
Climate warming can substantially impact embryonic development and juvenile growth in oviparous species. Estimating the overall impacts of climate warming on oviparous reproduction is difficult because egg-laying events happen throughout the reproductive season. Successful egg laying requires the completion of embryonic development as well as hatching timing conducive to offspring survival and energy accumulation. We propose a new metric-egg-laying opportunity (EO)-to estimate the annual hours during which a clutch of freshly laid eggs yields surviving offspring that store sufficient energy for overwintering. We estimated the EO within the distribution of a model species, Sceloporus undulatus, under recent climate condition and a climate-warming scenario by combining microclimate data, developmental functions, and biophysical models. We predicted that EO will decline as the climate warms at 74.8% of 11,407 sites. Decreasing hatching success and offspring energy accounted for more lost EO hours (72.6% and 72.9%) than the occurrence of offspring heat stress (59.9%). Nesting deeper (at a depth of 12 cm) may be a more effective behavioral adjustment for retaining EO than using shadier (50% shade) nests because the former fully mitigated the decline of EO under the considered warming scenario at more sites (66.1%) than the latter (28.3%). We advocate for the use of EO in predicting the impacts of climate warming on oviparous animals because it encapsulates the integrative impacts of climate warming on all stages of reproductive life history.
Efectos divergentes del cambio climático sobre la oportunidad de desove de las especies en regiones cálidas y frías Resumen El calentamiento global puede tener un impacto considerable sobre el desarrollo embrionario y el crecimiento juvenil de las especies ovíparas. Es complicado estimar el impacto general que tiene el calentamiento global sobre la reproducción ovípara ya que los eventos de desove suceden durante la época reproductiva. El desove exitoso requiere que se complete el desarrollo embrionario y que el momento de eclosión sea favorable para la supervivencia de las crías y la acumulación de energía. Proponemos una nueva medida-oportunidad de desove (OD)-para estimar las horas anuales durante las cuales una puesta de huevos recién desovados produce crías que sobreviven y almacenan suficiente energía para invernar. Estimamos la OD dentro de un modelo de distribución de la especie Sceloporus undulatus bajo las recientes condiciones climáticas y bajo un escenario de calentamiento global mediante la combinación de datos microclimáticos, funciones del desarrollo y modelos biofísicos. Pronosticamos que la OD declinará conforme la temperatura aumente en 74.8% de los 11407 sitios. La disminución del éxito de eclosión y de la energía de las crías explicó más horas perdidas de OD (72.6% y 72.9%) que la presencia de estrés por calor en las crías (59.9%). Una anidación más profunda (a una profundidad de 12 cm) puede ser un ajuste conductual más efectivo para la retención de la OD que los nidos con mayor sombreado (50% de sombra) porque el primero mitigó por completo la declinación de la OD bajo el escenario de calentamiento en más sitios (66.1%) que el segundo ajuste (28.3%). Defendemos el uso de la OD en el pronóstico del impacto del calentamiento global sobre los animales ovíparos porque encapsula los impactos integrales que tiene el calentamiento global sobre todas las etapas de la vida reproductiva. æ°åååå¨å¯å·å温æå°åºå¯¹ç©ç§äº§åµæºä¼é æä¸åå½±å.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Animales , Reproducción , Estaciones del AñoRESUMEN
Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai-Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.
Asunto(s)
Lagartos , Aclimatación , Animales , Regulación de la Temperatura Corporal , Hipoxia , Temperatura , TibetRESUMEN
Animals spend a considerable proportion of their life span at rest. However, resting status has often been overlooked when investigating how species respond to environmental conditions. This may induce a large bias in understanding the local adaptation of species across environmental gradients and their vulnerability to potential environmental change. Here, we conducted an empirical study on montane agamid lizards, combined with mechanistic modeling, to compare elevational variations in body temperature and metabolisms (cumulative digestion and maintenance cost) between resting and active status. Our study on three populations of an agamid lizard along an elevational gradient revealed a trend of decreasing body temperature toward higher elevations, the main contributor of which was resting status of the lizards. Using population-specific reaction norms, we predicted greater elevational variation in hourly and cumulative digestion for resting lizards than for active lizards. Climate-change impacts, estimated as the change in cumulative digestion, also show greater elevational variation when resting status is factored into the analysis. Further, our global analysis of 98 agamid species revealed that in about half of their combined distributional range, the contribution of resting status in determining the elevational variation in cumulative digestion and maintenance cost of lizards was greater than the contribution made by a lizard's active status. Our study highlights the importance of considering resting status when investigating how species respond to environmental conditions, especially for those distributed over tropical and subtropical mountain areas.
Asunto(s)
Altitud , Lagartos , Animales , Lagartos/fisiología , Modelos Biológicos , Metabolismo Energético/fisiología , Cambio Climático , Temperatura CorporalRESUMEN
Based on a molecular phylogenetic analysis and morphological comparison, a new species of mountain pitviper, Ovophisjenkinsi sp. nov., is described. The new species was collected in Yingjiang County, Yunnan Province, China. It can be distinguished from congeneric species by the following characters: (1) internasals in contact or separated by one small scale; (2) second supralabial entire and bordering the loreal pit; (3) dorsal scales in 23 (25)-21 (23, 25)-19 (17, 21) rows; (4) 134-142 ventrals; (5) 40-52 pairs of subcaudals; (6) third supralabial larger than fourth in all examined specimens of Ovophisjenkinsi sp. nov.; (7) deep orange-brown or dark brownish-grey markings on dorsal head surface; (8) background color of dorsal surface deep orange-brown or dark brownish-grey; (9) both sides of dorsum display dark brown trapezoidal patches; (10) scattered small white spots on dorsal surface of tail.
RESUMEN
In order to cope with the complexity and variability of the terrestrial environment, amphibians have developed a wide range of reproductive and parental behaviors. Nest building occurs in some anuran species as parental care. Species of the Music frog genus Nidirana are known for their unique courtship behavior and mud nesting in several congeners. However, the evolution of these frogs and their nidification behavior has yet to be studied. With phylogenomic and phylogeographic analyses based on a wide sampling of the genus, we find that Nidirana originated from central-southwestern China and the nidification behavior initially evolved at ca 19.3 Ma but subsequently lost in several descendants. Further population genomic analyses suggest that the nidification species have an older diversification and colonization history, while N. adenopleura complex congeners that do not exhibit nidification behavior have experienced a recent rapid radiation. The presence and loss of the nidification behavior in the Music frogs may be associated with paleoclimatic factors such as temperature and precipitation. This study highlights the nidification behavior as a key evolutionary innovation that has contributed to the diversification of an amphibian group under past climate changes.