Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499591

RESUMEN

Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Ováricas , Neoplasias Peritoneales , Femenino , Humanos , Metabolismo de los Lípidos , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Epiplón , Microambiente Tumoral
2.
Acta Pharm Sin B ; 13(11): 4553-4577, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969740

RESUMEN

Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-ß-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.

3.
Cancers (Basel) ; 13(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34572804

RESUMEN

Emerging evidence indicates that hypoxia plays a critical role in governing the transcoelomic metastasis of ovarian cancer. Hence, targeting hypoxia may be a promising approach to prevent the metastasis of ovarian cancer. Here, we report that BCL2A1, a BCL2 family member, acts as a hypoxia-inducible gene for promoting tumor progression in ovarian cancer peritoneal metastases. We demonstrated that BCL2A1 was induced not only by hypoxia but also other physiological stresses through NF-κB signaling and then was gradually reduced by the ubiquitin-proteasome pathway in ascites-derived ovarian cancer cells. The upregulated BCL2A1 was frequently found in advanced metastatic ovarian cancer cells, suggesting its clinical relevance in ovarian cancer metastatic progression. Functionally, BCL2A1 enhanced the foci formation ability of ovarian cancer cells in a stress-conditioned medium, colony formation in an ex vivo omental tumor model, and tumor dissemination in vivo. Under stress conditions, BCL2A1 accumulated and colocalized with mitochondria to suppress intrinsic cell apoptosis by interacting with the BH3-only subfamily BCL2 members HRK/BAD/BID in ovarian cancer cells. These findings indicate that BCL2A1 is an early response factor that maintains the survival of ovarian cancer cells in the harsh tumor microenvironment.

4.
Acta Pharm Sin B ; 11(7): 1947-1964, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386330

RESUMEN

Anoctamin 1 (ANO1) is a kind of calcium-activated chloride channel involved in nerve depolarization. ANO1 inhibitors display significant analgesic activity by the local peripheral and intrathecal administration. In this study, several thiophenecarboxylic acid and benzoic acid derivatives were identified as novel ANO1 inhibitors through the shape-based virtual screening, among which the 4-arylthiophene-3-carboxylic acid analogues with the best ANO1 inhibitory activity were designed, synthesized and compound 42 (IC50 = 0.79 µmol/L) was finally obtained. Compound 42 selectively inhibited ANO1 without affecting ANO2 and intracellular Ca2+ concentration. Subsequently, the analgesic effect was investigated by intragastric administration in pain models. Compound 42 significantly attenuated allodynia which was induced by formalin and chronic constriction injury. Through homology modeling and molecular dynamics, the binding site was predicted to be located near the calcium-binding region between α6 and α8. Our study validates ANO1 inhibitors having a significant analgesic effect by intragastric administration and also provides selective molecular tools for ANO1-related research.

5.
Eur J Med Chem ; 204: 112556, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739649

RESUMEN

Human papillomavirus (HPV) is a well-established etiological factor for cervical cancer, and the expression of oncogenic protein E7 is crucial for carcinogenesis. Herein, virtual screening was performed and 2-(2-aminobenzo[d]thiazol-6-yl) benzo[d]oxazol-5-amine derivatives were designed, synthesized as antineoplastic agents, and evaluated for their anti-tumor activities. Among them, the most promising compound H1 showed specific anti-proliferation ability against HeLa cells (IC50 = 380 nM) as well as excellent inhibition of tumor growth in the HeLa xenograft model without inducing obvious side effects. It is interesting that compound H1 displayed significant inhibition against HPV18-positive cervical cell lines (HeLa) but not for HPV16-positive cervical cell lines (SiHa). Further study demonstrated that a low concentration of compound H1 could lead to a cell cycle blockage at the G1 phase and promote cell apoptosis slightly (8.77%). Compound H1 also exhibited transcription repression, especially those associated with the oncoprotein E7 cellular pathway like E7/Rb/E2F-1/DNMT1, which were essential in tumorigenesis. Proteomics analysis revealed that E7 might be degraded through E3 ubiquitin ligases, which aligned with decreasing expression of E7 following the treatment of compound H1. Taken together, it indicated that compound H1 could be a promising potential agent for cervical cancer treatment.


Asunto(s)
Alphapapillomavirus/fisiología , Diseño de Fármacos , Oxazoles/química , Oxazoles/farmacología , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Fase G1/efectos de los fármacos , Células HeLa , Humanos , Ratones , Oxazoles/síntesis química , Proteínas E7 de Papillomavirus/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Eur J Med Chem ; 207: 112774, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882607

RESUMEN

α: 7 nicotinic acetylcholine receptors (nAChRs) expressed in the nervous and immune systems have been suggested to play important roles in the control of inflammation. However, the lack of antagonist tools specifically inhibiting α7 nAChR impedes the validation of the channel as therapeutic target. To discover a selective α7 antagonist, we started a pharmacophore-based virtual screening and identified a piperidine-spirooxadiazole derivative T761-0184 that acts as a α7 antagonist. A series of novel piperidine-spirooxadiazole derivatives were subsequently synthesized and evaluated using two-electrode voltage clamp (TEVC) assay in Xenopus oocytes. Lead compounds from two series inhibited α7 with their IC50 values ranging from 3.3 µM to 13.7 µM. Compound B10 exhibited α7 selectivity over other α4ß2 and α3ß4 nAChR subtypes. The analysis of structure-activity relationship (SAR) provides valuable insights for further development of selective α7 nAChR antagonists.


Asunto(s)
Diseño de Fármacos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacología , Oxadiazoles/química , Oxadiazoles/farmacología , Piperidinas/química , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Animales , Técnicas de Química Sintética , Antagonistas Nicotínicos/síntesis química , Oxadiazoles/síntesis química , Relación Estructura-Actividad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA