Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 18(9): e3000825, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886690

RESUMEN

Microbial dysbiosis in the upper digestive tract is linked to an increased risk of esophageal squamous cell carcinoma (ESCC). Overabundance of Porphyromonas gingivalis is associated with shorter survival of ESCC patients. We investigated the molecular mechanisms driving aggressive progression of ESCC by P. gingivalis. Intracellular invasion of P. gingivalis potentiated proliferation, migration, invasion, and metastasis abilities of ESCC cells via transforming growth factor-ß (TGFß)-dependent Drosophila mothers against decapentaplegic homologs (Smads)/Yes-associated protein (YAP)/Transcriptional coactivator with PDZ-binding motif (TAZ) activation. Smads/YAP/TAZ/TEA domain transcription factor1 (TEAD1) complex formation was essential to initiate downstream target gene expression, inducing an epithelial-mesenchymal transition (EMT) and stemness features. Furthermore, P. gingivalis augmented secretion and bioactivity of TGFß through glycoprotein A repetitions predominant (GARP) up-regulation. Accordingly, disruption of either the GARP/TGFß axis or its activated Smads/YAP/TAZ complex abrogated the tumor-promoting role of P. gingivalis. P. gingivalis signature genes based on its activated effector molecules can efficiently distinguish ESCC patients into low- and high-risk groups. Targeting P. gingivalis or its activated effectors may provide novel insights into clinical management of ESCC.


Asunto(s)
Infecciones por Bacteroidaceae/complicaciones , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Porphyromonas gingivalis/fisiología , Factor de Crecimiento Transformador beta/fisiología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Animales , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/mortalidad , Infecciones por Bacteroidaceae/patología , Células Cultivadas , Progresión de la Enfermedad , Drosophila , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiología , Neoplasias Esofágicas/mortalidad , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/microbiología , Carcinoma de Células Escamosas de Esófago/mortalidad , Femenino , Estudios de Seguimiento , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Señalizadoras YAP
2.
Crit Rev Food Sci Nutr ; 62(5): 1417-1425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33153277

RESUMEN

The current cohort study shows the inconsistent association between potato consumption and the risk of type 2 diabetes mellitus (T2DM). Therefore, we conducted a systematic review and dose-response meta-analysis of published prospective cohort studies to quantitatively estimate this association. We searched PubMed, Embase, MEDLINE, Web of Knowledge, and the Cochrane Library up to September 2019 for all published articles. Seven of the articles reported nine cohort studies with 383,211 participants, with 23,189 T2DM cases that met the inclusion criteria and were included for our analysis. The results of random effects model pooled relative risk (RR) showed an association between potato intake and the risk of T2DM (pooled RR = 1.13, 95% CI: 1.02-1.26, p > 0.01). In the subgroup analysis, French fries, long-term follow-up, large sample size, and high-quality studies were associated with an increased T2DM risk. Further, a linear dose-response analysis indicated that 100 g/day increment of total potato (RR = 1.05, 95% CI: 1.02-1.08) and French fries (RR = 1.10, 95% CI: 1.07-1.14) consumption may increase the risk of T2DM by 5% and 10%, respectively. Our meta-analysis showed that potato consumption, especially French fries consumption, was associated with increased T2DM risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Solanum tuberosum , Estudios de Cohortes , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Humanos , Estudios Prospectivos , Factores de Riesgo
3.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3915-3921, 2020 Aug.
Artículo en Zh | MEDLINE | ID: mdl-32893589

RESUMEN

This study aimed to investigate the effect and possible mechanism of Bidens pilosa decoction on non-alcoholic fatty liver disease(NAFLD) induced by high fat and high glucose in mice. Bald/c mice were randomly divided into normal group, model group, metformin(200 mg·kg~(-1)) treatment group, Bidens pilosa decoction(10 g·kg~(-1)) treatment group, metformin and B. pilosa decoction(100 mg·kg~(-1)+5 g·kg~(-1)) treatment group. Except for the normal group, mice in the other four groups were fed with high-fat and high-glucose diet for 8 weeks to establish the non-alcoholic fatty liver model. After 4 weeks of treatment, blood was collected from the eyeballs, the mice were sacrificed, and relevant indicators were detected. The results showed that compared with the model group, blood lipid and blood glucose levels of each treatment group were significantly lower(P<0.05); HE staining results showed that liver pathological damage in each treatment group was significantly improved; oil red O staining results showed fat distribution in each treatment group significantly reduced(P<0.01); immunohistochemical staining showed that glucose regulated the protein expression of protein 78(GRP78) in liver tissues of each treatment group was also significantly reduced(P<0.01); Western blot results showed that endoplasmic reticulum stress signal pathway-related factors GRP78, phosphorylated-protein kinase R-like ER kinase(p-PERK), eukaryotic translation-initiation factor 2α(eIF2α), activating transcription factor 4(ATF4), C/EBP homologous protein(Chop), inositol requiring 1α(IRE1α), and cleaved-cysteinyl aspartate specific proteinase 12(cleaved-caspase-12) were significantly reduced(P<0.01). The results of the combined drug treatment group were better than those of the single drug treatment group. These results showed that B. pilosa decoction had the effect in improving non-alcoholic fatty liver, and its mechanism may be related to the down-regulation of the expression of endoplasmic reticulum stress(ERS)-related factors, and the reduction of the apoptosis of hepatocytes caused by ERS and the down-regulation of blood lipid and blood glucose levels.


Asunto(s)
Bidens , Enfermedad del Hígado Graso no Alcohólico , Animales , Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Endorribonucleasas , Glucosa , Ratones , Proteínas Serina-Treonina Quinasas
4.
Foods ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672904

RESUMEN

Epigallocatechin gallate (EGCG), the key constituent of tea polyphenols, presents challenges in terms of its lipid solubility, stability, and bioavailability because of its polyhydroxy structure. Consequently, structural modifications are imperative to enhance its efficacy. This paper comprehensively reviews the esterification techniques applied to EGCG over the past two decades and their impacts on bioactivities. Both chemical and enzymatic esterification methods involve catalysts, solvents, and hydrophobic groups as critical factors. Although the chemical method is cost-efficient, it poses challenges in purification; on the other hand, the enzymatic approach offers improved selectivity and simplified purification processes. The biological functions of EGCG are inevitably influenced by the structural changes incurred through esterification. The antioxidant capacity of EGCG derivatives can be compromised under certain conditions by reducing hydroxyl groups, while enhancing lipid solubility and stability can strengthen their antiviral, antibacterial, and anticancer properties. Additionally, esterification broadens the utility of EGCG in food applications. This review provides critical insights into developing cost-effective and environmentally sustainable selective esterification methods, as well as emphasizes the elucidation of the bioactive mechanisms of EGCG derivatives to facilitate their widespread adoption in food processing, healthcare products, and pharmaceuticals.

5.
Cell Signal ; 115: 111040, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199596

RESUMEN

MBIP is a component of the Ada2A containing complex (ATAC) and has been identified as a susceptibility gene in several cancers. However, the role and molecular mechanism of MBIP in esophageal squamous cell carcinoma (ESCC) remain unclear. Our finding indicated that the expression level of MBIP in ESCC was higher than that in normal tissue (P < 0.05) based on the data from the Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO). Kaplan-Meier analysis showed that high MBIP expression was closely associated with deeper invasion and worse prognosis. Transwell assay and mouse xenograft assay demonstrated that MBIP overexpression promoted migration and invasion in vitro and in vivo, while MBIP knockdown played the opposite role. Furthermore, the results of RNA-seq, qRT-PCR, western blotting and rescue experiments revealed that MBIP promoted epithelial-mesenchymal transition (EMT) via the phosphorylation JNK/p38 in ESCC. Our study indicates that MBIP plays a significant role in the prognosis and metastasis of ESCC, suggesting that MBIP might serve as an ESCC prognostic biomarker.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Metilglicósidos , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Invasividad Neoplásica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
PeerJ ; 12: e17105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563016

RESUMEN

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods: We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results: We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions: In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , ARN Largo no Codificante/genética , Tejido Adiposo Blanco/metabolismo , Neoplasias Colorrectales/genética , ARN Mensajero/genética
7.
Biomed Pharmacother ; 173: 116367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460365

RESUMEN

Sphingolipid transporter 1 (SPNS1) is a significant differentially expressed gene (DEGs) in esophageal squamous cell carcinoma (ESCC). According to 3 pairs clinic cohorts, transcriptomic (155 pairs of ESCC samples and GSE53624, and proteomic data from PXD021701 including 124 ESCC samples) we found that SPNS1 was significantly higher in ESCC tissues compared to adjacent normal esophagus tissues. ESCC patients with high SPNS1 had a significantly poorer clinical prognosis than those with low SPNS1. Knockdown of SPNS1 significantly inhibited the proliferation, migration, and invasion abilities of ESCC cells, while promoting apoptosis. And overexpression of SPNS1 exhibited opposite functions. Furthermore, ESCC cells became more sensitive to 5-fluorouracil (5-FU) when SPNS1 was knocked down. Transcriptome sequencing revealed that NEU1 was one significant DEG affected by SPNS1 and positively correlated with SPNS1 expression. Oseltamivir phosphate (OP), one NEU1 inhibitor, markedly reversed 5-FU resistance, migration, and proliferation induced by high expression of SPNS1 both in vivo and in vitro. Our findings indicated that SPNS1 might promote the progression of ESCC by upregulating NEU1 expression and influencing chemotherapy sensitivity. These results provide new perceptions into potential therapeutic targets for ESCC treatment. The present study aimed to investigate the role and underlying mechanism of SPNS1 in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteómica , Línea Celular Tumoral , Proliferación Celular , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
8.
Vet Res ; 44: 47, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23822604

RESUMEN

Foot-and-mouth disease virus (FMDV) is responsible for substantial economic losses in livestock breeding each year, and the development of new strategies is needed to overcome the limitations of existing vaccines and antiviral drugs. In this study, we evaluated the antiviral potential of transgenic porcine cells and suckling mice that simultaneously expressed two short-hairpin RNAs (shRNAs) targeting the conserved regions of the viral polymerase protein 3D and the non-structural protein 2B. First, two recombinant shRNA-expressing plasmids, PB-EN3D2B and PB-N3D2B, were constructed and the efficiency of the constructs for suppressing an artificial target was demonstrated in BHK-21 cells. We then integrated PB-EN3D2B into the genome of the porcine cell line IBRS-2 using the piggyBac transposon system, and stable monoclonal transgenic cell lines (MTCL) were selected. Of the 6 MTCL that were used in the antiviral assay, 3 exhibited significant resistance with suppressing ratios of more than 94% at 48 hours post-challenge (hpc) to both serotype O and serotype Asia 1 FMDV. MTCL IB-3D2B-6 displayed the strongest antiviral activity, which resulted in 100% inhibition of FMDV replication until 72 hpc. Moreover, the shRNA-expressing fragment of PB-N3D2B was integrated into the mouse genome by DNA microinjection to produce transgenic mice. When challenged with serotype O FMDV, the offspring of the transgenic mouse lines N3D2B-18 and N3D2B-81 exhibited higher survival rates of 19% to 27% relative to their non-transgenic littermates. The results suggest that these heritable shRNAs were able to suppress FMDV replication in the transgenic cell lines and suckling mice.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/genética , Fiebre Aftosa/prevención & control , Regulación Viral de la Expresión Génica , ARN Interferente Pequeño/genética , Proteínas Virales/genética , Animales , Animales Modificados Genéticamente , Animales Lactantes , Línea Celular , Secuencia Conservada , Resistencia a la Enfermedad , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/inmunología , Ratones , Plásmidos/genética , Plásmidos/inmunología , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/metabolismo , Porcinos , Proteínas Virales/química , Proteínas Virales/inmunología
9.
Metabolites ; 13(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37512528

RESUMEN

Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity. This review provides a comprehensive summary of gut microbiota changes associated with obesity, the functional roles of gut microbiota-derived metabolites, and the importance of the complex interactions between the gut microbiota and target tissues in the pathogenesis of obesity. It places particular emphasis on the roles of adipose tissue microenvironment interactions in the onset of obesity.

10.
Polymers (Basel) ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37835963

RESUMEN

Effectively inhibiting the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) is crucial to human health. In the present study, chemical model systems were used to evaluate the inhibitory effects of seven hydrocolloids on HA and AGE formation. The results showed that hydrocolloids effectively inhibited the formation of two major AGEs. However, their inhibitory action against HA formation showed unexpected results, wherein alginic acid, carrageenan and konjac glucomannan promoted the formation of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), harmane, norharmane and 2-amino-3,8-dimethyl-imidazo [4,5-f]-quinoline (MeIQx). Only chitosan and pectin showed significant inhibitory effects on HAs, reducing HA levels by 34.5-56.3% and 30.1-56.6%, respectively. In grilled beef patties, the addition of 1.5% chitosan and pectin significantly decreased AGE and HA content by 53.8-67.0% and 46.9-68.1%, respectively. Moreover, it had a limited impact on quality and sensory properties. Further mechanism studies conducted in model systems revealed that chitosan and pectin decreased the formation of key intermediates of AGEs and HAs. These findings suggest that chitosan and pectin are powerful inhibitors against AGE and HA formation with minimal impact on food quality. Therefore, their application in meat preparation and processing could effectively decrease human dietary exposure to HAs and AGEs.

11.
Foods ; 12(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37297348

RESUMEN

The Maillard reaction (MR) is a complicated chemical process that has been extensively studied. Harmful chemicals known as advanced glycation end products (AGEs), with complex structures and stable chemical characteristics, are created during the final stage of the MR. AGEs can be formed both during the thermal processing of food and in the human body. The number of AGEs formed in food is much higher compared to endogenous AGEs. A direct connection exists between human health and the build-up of AGEs in the body, which can result in diseases. Therefore, it is essential to understand the content of AGEs in the food we consume. The detection methods of AGEs in food are expounded upon in this review, and the advantages, disadvantages, and application fields of these detection methods are discussed in depth. Additionally, the production of AGEs in food, their content in typical foods, and the mechanisms influencing their formation are summarized. Since AGEs are closely related to the food industry and human health, it is hoped that this review will further the detection of AGEs in food so that their content can be evaluated more conveniently and accurately.

12.
Food Chem ; 408: 135159, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549165

RESUMEN

Garlic diallyl disulfide (DAD) nano-emulsions consisting of soy proteins were constructed, and their effects on physicochemical properties and heterocyclic aromatic amines (HAAs) formation in roasted pork were investigated. DAD was well encapsulated by soy proteins with a mean particle of 400-700 nm. Applying DAD nano-emulsions to pork patties significantly altered the color and texture of roasted pork, with a slight increase in brightness and decreases in redness and yellowness. The flavor determination demonstrated that sulfur-containing compound levels in encapsulated DAD were significantly reduced, particularly 7S group compounds, indicating an effective shielding effect on the irritating odor of garlic oil by protein. The levels of three HAAs (MeIQx, PhIP, and Harman) were significantly reduced by DAD nano-emulsion exposure (51.84 %, 76.80 %, and 48.70 %, respectively). This study provides a new method for inhibiting HAA formation and improving the sensory qualities of meat products.


Asunto(s)
Ajo , Compuestos Heterocíclicos , Carne de Cerdo , Carne Roja , Animales , Porcinos , Ajo/química , Proteínas de Soja , Culinaria/métodos , Antioxidantes/química , Aminas/química , Compuestos Heterocíclicos/química , Carne/análisis
13.
Meat Sci ; 204: 109236, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37339566

RESUMEN

This study investigated the influence mechanism of soy protein and its hydrolysates (under three different degree of hydrolysis) on formation of heterocyclic aromatic amines (HAAs) formation in roasted pork. The results showed that 7S and its hydrolysates significantly inhibited the formation of quinoxaline HAAs, and the maximum inhibitory rate of MeIQx, 4,8-MeIQx, and IQx was 69%, 79%, and 100%, respectively. However, soy protein and its hydrolysates could promote the formation of pyridine HAAs (PhIP, and DMIP), its content increased significantly with the increase in the degree of hydrolysis of the protein. The content of PhIP increased 41, 54, and 165 times with the addition of SPI, 7S, and 11S at 11% degree of hydrolysis, respectively. In addition, they promoted the formation of ß-carboline HAAs (Norharman and Harman), in a manner similar with that of PhIP, especially the 11S group. The inhibitory effect on quinoxaline HAAs was probably correlated with DPPH radical scavenging capacity. Nevertheless, the promotive effect on other HAAs might be related to the high levels of free amino acids and reactive carbonyls. This research may provide recommendation for the application of soy protein in high-temperature meat products.


Asunto(s)
Compuestos Heterocíclicos , Carne de Cerdo , Carne Roja , Animales , Porcinos , Proteínas de Soja , Culinaria/métodos , Aminas/análisis , Quinoxalinas/farmacología , Compuestos Heterocíclicos/análisis , Carne/análisis
14.
Foods ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37048344

RESUMEN

In this study, soy isoflavones-loaded nanoparticles were prepared using rice proteins (RPs) hydrolyzed by four types of enzyme (alcalase, neutrase, trypsin, and flavorzyme). After optimizing the preparation conditions, the encapsulation efficiency (EE) of the nanoparticles ranged from 61.16% ± 0.92% to 90.65% ± 0.19%. The RPs that were hydrolyzed by flavorzyme with a molecular weight of <5 KDa showed better characters on the formation of nanoparticles, and the formed nanoparticles had the highest EE and loading capacity (9.06%), the smallest particle size (64.77 nm), the lowest polymer dispersity index (0.19), and the lowest zeta potential (-25.64 mV).The results of Fourier transform ion cyclotron resonance, X-ray diffraction, and fluorescence spectroscopy showed that the nanoparticles were successfully encapsulated. The study of interaction showed that the formation of nanoparticles may depend mainly on hydrogen bonds, but other interactions, such as hydrophobic interactions and electrostatic interactions, cannot be ignored. After encapsulation, the pH stability, temperature stability, ionic stability, and oxidation resistance of the nanoparticles were enhanced. Moreover, the in vitro release experiment showed that the encapsulated nanoparticles had a certain protective effect on soybean isoflavones. In summary, rice protein hydrolysates are promising carriers for soybean isoflavones.

15.
J Thorac Dis ; 15(9): 4938-4948, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37868877

RESUMEN

Background: In view of the low accuracy of the prognosis model of esophageal squamous cell carcinoma (ESCC), this study aimed to optimize the least squares support vector machine (LSSVM) algorithm to determine the uncertain prognostic factors using a Cloud model, and consequently, to establish a new high-precision prognosis model of ESCC. Methods: We studied 4,771 ESCC patients(training samples) from the Surveillance, Epidemiology, and End Results (SEER) database and 635 ESCC patients(validation samples) from the Henan Provincial Center for Disease Control and Prevention (HCDC) database, with the same exclusion criteria and inclusion criteria for both databases, and obtained permission to obtain a research data file in the SEER database from the National Cancer Institute. The independent risk factors were analyzed using the log-rank method, survival curves, univariate and multivariate Cox analysis. Finally, the independent prognostic factors were used to construct the nomogram, random forest and Cloud-LSSVM prognostic models were utilized for validation. Results: The overall median survival time of the SEER database was 14 months (HCDC samples was 46 months), the mean survival time was 26.5 months (HCDC samples was 36.8 months), and the 3-year survival rate was 65.8%. This is because most of the patients with Henan samples are early ESCC, and most of the Seer patients are T3 and T4 people. The multivariate Cox analysis showed that age at diagnosis (P<0.001), sex (P=0.001), race (P=0.002), differentiation grade (P<0.001), pathologic T category (P<0.001), and pathologic M category (P<0.001) were the factors affecting the prognosis of ESCC patients. The SEER data and HCDC database results showed that the accuracy of the Cloud-LSSVM (C-index =0.71, 0.689) model is higher than the differentiation grade (C-index =0.548, 0.506), random forest (C-index =0.649, 0.498), and nomogram (C-index =0.659, 0.563). This new model can realize the unity of the randomness and fuzziness of the Cloud model and utilize the powerful learning and non-linear mapping abilities of LSSVM. Conclusions: Due to the difference of clans between training samples and test samples, the accuracy of prediction is generally not high, but the accuracy of Cloud-LSSVM model is much higher than other models. The new model provides a clear prognostic superiority over the random forest, nomogram, and other models.

16.
Virol J ; 9: 275, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23158906

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is a major health concern with more than two billion individuals currently infected worldwide. Because of the limited effectiveness of existing vaccines and drugs, development of novel antiviral strategies is urgently needed. Heat stress cognate 70 (Hsc70) is an ATP-binding protein of the heat stress protein 70 family. Hsc70 has been found to be required for HBV DNA replication. Here we report, for the first time, that combined siRNAs targeting viral gene and siHsc70 are highly effective in suppressing ongoing HBV expression and replication. METHODS: We constructed two plasmids (S1 and S2) expressing short hairpin RNAs (shRNAs) targeting surface open reading frame of HBV(HBVS) and one plasmid expressing shRNA targeting Hsc70 (siHsc70), and we used the EGFP-specific siRNA plasmid (siEGFP) as we had previously described. First, we evaluated the gene-silencing efficacy of both shRNAs using an enhanced green fluorescent protein (EGFP) reporter system and flow cytometry in HEK293 and T98G cells. Then, the antiviral potencies of HBV-specific siRNA (siHBV) in combination with siHsc70 in HepG2.2.15 cells were investigated. Moreover, type I IFN and TNF-α induction were measured by quantitative real-time PCR and ELISA. RESULTS: Cotransfection of either S1 or S2 with an EGFP plasmid produced an 80%-90% reduction in EGFP signal relative to the control. This combinational RNAi effectively and specifically inhibited HBV protein, mRNA and HBV DNA, resulting in up to a 3.36 log10 reduction in HBV load in the HepG2.2.15 cell culture supernatants. The combined siRNAs were more potent than siHBV or siHsc70 used separately, and this approach can enhance potency in suppressing ongoing viral gene expression and replication in HepG2.2.15 cells while forestalling escape by mutant HBV. The antiviral synergy of siHBV used in combination with siHsc70 produced no cytotoxicity and induced no production of IFN-α, IFN-ß and TNF-α in transfected cells. CONCLUSIONS: Our combinational RNAi was sequence-specific, effective against wild-type and mutant drug-resistant HBV strains, without triggering interferon response or producing any side effects. These findings indicate that combinational RNAi has tremendous promise for developing innovative therapy against viral infection.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Virales/metabolismo , Línea Celular , Citometría de Flujo , Regulación Viral de la Expresión Génica , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas del Choque Térmico HSC70/genética , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/metabolismo , Humanos , Plásmidos , Transfección , Proteínas Virales/genética , Replicación Viral/genética
17.
Zhonghua Yi Xue Za Zhi ; 92(11): 768-72, 2012 Mar 20.
Artículo en Zh | MEDLINE | ID: mdl-22781359

RESUMEN

OBJECTIVE: To explore the antiviral efficacy of small interfering RNAs (siRNAs)/shRNA targeting preC/C of HBV in human hepatoma cells Huh-7 and HepG2.2.15 cells. METHODS: Three 21 nucleotide(nt) siRNAs for treating HBV preC/C gene were designed and synthesized according to the HBV genome in GenBank accession numbers (U95551); simultaneously, one 21-nt-long non-homologous siRNA was also designed randomly for negative control. They were cloned into vector pU6 for constructing shRNA-expressing plasmids pU6-C1, pU6-C2, pU6-C3 and control pU6-C4. To assess the function of siRNAs, a reporter gene system was constructed. The HBV preC/C gene was synthesized by PCR with pT-HBV1.3 as the template. The preC/C gene was then inserted into the enhanced green fluorescent protein expression vector (EGFP-N1) in order to construct the recombinant plasmid pEGFP-preC/C (E-C), which carries the EGFP reporter gene. The three shRNA-expressing plasmids-pU6-C1, pU6-C2, or pU6-C3-was each then cotransfected into Huh-7 cells along with either reporter gene expression vector E-C or the controls; or these three plasmids-pU6-C1, pU6-C2, or pU6-C3-was each cotransfected into HepG2.2.15 cells along with the controls. First, upon determination of the number of cells exhibiting EGFP expression in Huh-7cells as detected by an BH-2 fluorescence microscope and FACS-440 flow cytometry at different times after cotransfection, the investigators evaluated the inhibitory efficiency of the three shRNA-expressing plasmids by an EGFP reporter system in cultured cells. Subsequently, the expression amount of HBsAg and HBeAg in HepG2.2.15 cell supernatant at 24, 48, 72 and 96 h post-cotransfection was detected by enzyme-linked immunosorbent assay (ELISA). Immunofluorescence was used to detect the expression of HBsAg and HBcAg at 72 h post-cotransfection in HepG2.2.15 cells. The copy level of HBV mRNA transcripts cDNA in HepG2.2.15 cells was further investigated through quantitative real-time polymerase chain reaction (real-time PCR). RESULTS: In comparison with single plasmid transfection pEGFP-N1 or E-C, fluorescence microscope examination and flow cytometry detection at 48 hours after cotransfection indicated that the expression of the reporter gene EGFP in cotransfected group Huh-7 cell involving pU6-C1, pU6-C2 or pU6-C3 resulted in an 80% reduction in EGFP signal relative to the controls (P < 0.01). It was also found through immunofluorescence that the expression of HBsAg and HBcAg in HepG2.2.15 cells was reduced markedly (P < 0.01), that the copy level of HBV mRNA transcripts cDNA as detected at 48 hours after cotransfection by quantitative real-time PCR was reduced respectively by 73.9% ± 1.2% (P = 0.029), 48.2% ± 1.8% and 35.8% ± 1.4% (P = 0.037, 0.040) relative to the control, that it conformed with that detected by fluorescence microscope/flow cytometry, ELISA, and immunofluorescence (P < 0.01). Thereby further corroborating the antiviral efficacy of RNAi. The efficacy was obvious at 48 h, reaching a peak at 72 h. CONCLUSION: For the first time it has been found that RNAi induced by siRNA/shRNA targeting HBV preC/C gene is effective and specific in inhibiting HBV replication and expression in human hepatoma cells Huh-7 and HepG2.2.15 cells. Our data suggest that RNAi may provide an effective, viable approach in gene therapy to treating major infectious diseases such as HBV/HCV/HIV infection.


Asunto(s)
Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/fisiología , Neoplasias Hepáticas/virología , Interferencia de ARN , Regulación Viral de la Expresión Génica , Marcación de Gen , Vectores Genéticos , Células Hep G2 , Virus de la Hepatitis B/genética , Humanos , ARN Interferente Pequeño/genética , Replicación Viral
18.
Front Nutr ; 9: 852717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356734

RESUMEN

This study investigated the effect of multiple precursor amino acids on the simultaneous formation of acrylamide, ß-carbolines (i. e., harmane and norharmane), and advanced glycation end products (AGEs) [i.e., Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine] via a chemical model system. This model system was established with single or multiple precursor amino acids, including lysine-glucose (Lys/Glu), asparagine-glucose (Asn/Glu), tryptophan-glucose (Trp/Glu), and a combination of these amino acids (Com/Glu). Kinetic parameters were calculated by multiresponse non-linear regression models. We found that the k values of the AGEs and of acrylamide decreased, while those of harmane increased in the Com/Glu model when heated to 170 and 200°C. Our results indicated that the precursor amino acid of acrylamide and AGEs compete for α-dicarbonyl compounds, leading to a decrease in the formation of AGEs and acrylamide. Moreover, compared with asparagine, the precursor amino acid of ß-carbolines was more likely to react with acetaldehyde by Pictet-Spengler condensation, which increased the formation of harmane and decreased the formation of acrylamide via the acrolein pathway.

19.
J Agric Food Chem ; 70(14): 4445-4456, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35364817

RESUMEN

Acrylamide is a toxic compound that is produced widely during food processing, but whether the daily dietary consumption of acrylamide can impair the cognitive dysfunction in diabetic individuals and the potential underlying mechanisms are unknown. The aim of the present study was to observe the changes in cognitive and memory performance caused by chronic acrylamide exposure and to evaluate its influence on the brain morphology, oxidative damage, neuroinflammation, and brain metabolic disturbance. Goto-Kakizaki (GK) rats, a rat model of diabetes, were orally administered acrylamide at 1 mg/kg body weight for 8 weeks. The results of the novel object recognition and Y-maze tests showed that the consumption of acrylamide significantly aggravated diabetes-associated cognitive dysfunction in GK rats. Acrylamide increased reactive oxygen species and malondialdehyde formation and reduced glutathione levels, catalase, and total antioxidant capacity activity, which caused a succession of events associated with oxidative damage, including glial cell activation. After the activation of astrocytes and microglia, related cytokines, including interleukin-1ß, interleukin-6, tumor necrosis factor-α, and lipopolysaccharide, were released, amyloid ß-protein was accumulated, brain-derived neurotrophic factor was decreased, and the expression of caspase-3 and caspase-9 was increased, which aggravated neuroinflammation. Furthermore, there was perturbation of some important metabolites, including glutamic acid, citric acid, pyruvic acid, lactate, and sphinganine, and their related glucose, amino acid, and energy metabolism pathways in the brain. This work helps to demonstrate the effect of consumption of acrylamide in the daily diet on diabetes-associated cognitive dysfunction and its underlying mechanisms.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Enfermedades Metabólicas , Acrilamida/toxicidad , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/metabolismo , Disfunción Cognitiva/etiología , Exposición Dietética , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Ratas
20.
Foods ; 11(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37430910

RESUMEN

Heterocyclic amines (HAs) and advanced glycation end products (AGEs) are important harmful products formed simultaneously during the thermal processing of food. In order to develop a green, efficient method that can be used to control the production of two harmful products simultaneously in food processing. In the present study, deep eutectic solvents (DESs) were used to extract ginger, and this method produced significantly higher levels of total phenolic and flavonoid content as well as an antioxidant activity than ginger extracted using conventional solvents. Herein, we further investigated the inhibitory effects of DES extracts from ginger on the generation of HAs and AGEs in roast beef patties. All the nine DES extracts reduced the formation of HAs and AGEs, and the application of choline chloride-lactic-acid-based DES extract caused a signification reduction of 44.33%, 29.38%, 50.95%, 78.61%, 21.94%, and 17.52% of the PhIP, MeIQx, MeIQ, 4,8-DiMeIQx, Harmane, and Norhamane content, and those for Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) were 49.08% and 58.50%, respectively. Furthermore, the proximate and texture profile changes of beef patties as well as the precursors (creatine, creatinine, and glucose) of HAs and AGEs were evaluated to determine the mechanism of ginger DES extracts on the formation of HAs and AGEs and the physical/chemical changes of ginger DES extracts on beef patties. This study develops a new method for reducing the amount of HAs and AGEs in meat, which will help food manufacturers produce healthier meat products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA