Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glia ; 67(12): 2410-2423, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31429130

RESUMEN

Neuroprotective M2-skewed microglia appear as promising to alter the course of neurodegenerative diseases and G protein-coupled receptors (GPCRs) are potential targets to achieve such microglial polarization. A common feature of adenosine A2A (A2A R) and cannabinoid CB2 (CB2 R) GPCRs in microglia is that their expression is upregulated in Alzheimer's disease (AD). On the one hand, CB2 R seems a target for neuroprotection, delaying neurodegenerative processes like those associated to AD or Parkinson's diseases. A2A R antagonists reduce amyloid burden and improve cognitive performance and memory in AD animal models. We here show a close interrelationship between these two receptors in microglia; they are able to physically interact and affect the signaling of each other, likely due to conformational changes within the A2A -CB2 receptor heteromer (A2A -CB2 Het). Particularly relevant is the upregulation of A2A -CB2 Het expression in samples from the APPSw ,Ind AD transgenic mice model. The most relevant finding, confirmed in both heterologous cells and in primary cultures of microglia, was that blockade of A2A receptors results in increased CB2 R-mediated signaling. This heteromer-specific feature suggests that A2A R antagonists would potentiate, via microglia, the neuroprotective action of endocannabinoids with implications for AD therapy.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Microglía/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/fisiología , Animales , Dronabinol/farmacología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Receptor Cannabinoide CB2/agonistas , Transducción de Señal/efectos de los fármacos
2.
Cells ; 9(1)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936298

RESUMEN

BACKGROUND: Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D3 receptors (D3Rs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by D3R and either MT1 (MT1R) or MT2 (MT2R) melatonin receptors. Heteromerization led to the blockade of D3R-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. CONCLUSIONS: Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of D3R-MT1R and D3R-MT1R was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2.


Asunto(s)
Cuerpo Ciliar/metabolismo , Células Epiteliales/metabolismo , Glaucoma/patología , Hipertensión Ocular/patología , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Receptores de Dopamina D3/metabolismo , Estudios de Casos y Controles , Glaucoma/metabolismo , Células HEK293 , Humanos , Hipertensión Ocular/metabolismo , Multimerización de Proteína
3.
Bio Protoc ; 9(19): e3385, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654881

RESUMEN

Detecting protein-protein interactions by co-immunoprecipitation provided a major advancement in the immunology research field. In the G-protein-coupled receptors (GPCRs) research field, colocalization and co-immunoprecipitation were used to detect interactions, but doubts arose due to specificity of the antibodies (monoclonal in the case of receptors related to immunology and polyclonal in the case of GPCRs) and due to the possibility of false positive due to the potential occurrence of bridging proteins. Accordingly, new methodological approaches were needed, and energy transfer techniques have been instrumental to detect direct protein-protein, protein-receptor or receptor-receptor interactions. Of the two most relevant methods (Förster, or fluorescence resonance energy transfer: FRET and Bioluminescence energy transfer: BRET), the protocol for BRET is here presented. BRET has been instrumental to detect direct interactions between GPCRs and has contributed to demonstrate that GPCR dimers/oligomer functionality is different from that exerted by individual receptors. Advantages outweigh those of FRET as no fluorescence source is needed. Interestingly, BRET is not only useful to validate interactions detected by other means or hypothesized in the basis of indirect evidence, but to measure signal transduction events. In fact, BRET may, for instance, be used to assess ß-arrestin recruitment to activated GPCRs.

4.
Neuropharmacology ; 152: 58-66, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738036

RESUMEN

Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2 (CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical sections were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Asunto(s)
Receptor Cross-Talk , Receptor Cannabinoide CB2/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Células HEK293 , Humanos , Hipoxia/metabolismo , Ratas , Transducción de Señal
5.
Neuropharmacology ; 152: 102-111, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30465812

RESUMEN

Stress is one of the factors underlying drug seeking behavior that often goes in parallel with loss of appetite. We here demonstrate that orexin 1 receptors (OX1R) may form complexes with the corticotropin releasing factor CRF2 receptor. Two specific features of the heteromer were a cross-antagonism and a blockade by CRF2 of OX1R signaling. In cells expressing one of the receptors, agonist-mediated signal transduction mechanisms were potentiated by amphetamine. Sigma 1 (σ1) and 2 (σ2) receptors are targets of drugs of abuse and, despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is not known. We here show that σ1 receptors interact with CRF2 receptors and that σ2 receptors interact with OX1R. Moreover, we show that amphetamine effect on CRF2 receptors was mediated by σ1R whereas the effect on OX1 receptors was mediated by σ2R. Amphetamine did potentiate the negative cross-talk occurring within the CRF2-OX1 receptor heteromer context, likely by a macromolecular complex involving the two sigma receptors and the two GPCRs. Finally, in vivo microdialysis experiments showed that amphetamine potentiated orexin A-induced dopamine and glutamate release in the ventral tegmental area (VTA). Remarkably, the in vivo orexin A effects were blocked by a selective CRF2R antagonist. These results show that amphetamine impacts on the OX1R-, CRF2R- and OX1R/CRF2R-mediated signaling and that cross-antagonism is instrumental for in vivo detection of GPCR heteromers. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Asunto(s)
Anfetamina/farmacología , Receptores de Orexina/metabolismo , Receptor Cross-Talk/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Masculino , Receptores de Orexina/fisiología , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/fisiología , Transducción de Señal
6.
Biomol Concepts ; 9(1): 143-154, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30864350

RESUMEN

Functional selectivity is a property of G-protein-coupled receptors (GPCRs) by which activation by different agonists leads to different signal transduction mechanisms. This phenomenon is also known as biased agonism and has attracted the interest of drug discovery programs in both academy and industry. This relatively recent concept has raised concerns as to the validity and real translational value of the results showing bias; firstly biased agonism may vary significantly depending on the cell type and the experimental constraints, secondly the conformational landscape that leads to biased agonism has not been defined. Remarkably, GPCRs may lead to differential signaling even when a single agonist is used. Here we present a concept that constitutes a biochemical property of GPCRs that may be underscored just using one agonist, preferably the endogenous agonist. "Biased receptor functionality" is proposed to describe this effect with examples based on receptor heteromerization and alternative splicing. Examples of regulation of final agonist-induced outputs based on interaction with ß-arrestins or calcium sensors are also provided. Each of the functional GPCR units (which are finite in number) has a specific conformation. Binding of agonist to a specific conformation, i.e. GPCR activation, is sensitive to the kinetics of the agonist-receptor interactions. All these players are involved in the contrasting outputs obtained when different agonists are assayed.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Sesgo , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química
7.
Water Res ; 37(15): 3658-65, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12867332

RESUMEN

A supercritical fluid extraction (SFE) procedure for Irgarol 1051 (i.e. 2-(tert-butylamino)-4-(cyclopropylamino)-6-(methylthio)-1,3,5-triazine) determination in marine sediments, which minimises the solvent usage, is developed and compared to a conventional extraction technique (i.e. sonication). First, the use of methanol (MeOH) in the presence of trifluoroacetic acid (TFA) as secondary modifier of supercritical carbon dioxide was evaluated. Extraction efficiency was strongly dependent on the modifier content but lesser on pressure (100-410 bar) and temperature (60-200 degrees C). In the selected extraction conditions (20% MeOH/TFA 0.65M, 370 bar, 150 degrees C) recoveries higher than 87% were obtained and the limit of detection was 3 ngg(-1) and the relative standard deviation of 10% (N=3) by GC coupled to mass spectrometry (GC-MS) in the electron impact mode. The developed SFE procedure is more convenient to extract Irgarol 1051 than the agitation plus sonication methods concerning on solvent usage (1.5 vs. 20 mL) being compatible with immunochemical procedures avoiding any solvent transfer step. The developed SFE combined with immunoaffinity chromatography (IAC) is highly selective allowing the determination of Irgarol by gas chromatography with nitrogen-phosphorus detection or in sediments at low ngg(-1) level (11-35 ngg(-1)) from Mediterranean marina and harbour sediments.


Asunto(s)
Cromatografía con Fluido Supercrítico/métodos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Triazinas/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Inmunoquímica , Región Mediterránea , Presión , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA