Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 151: 107693, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116523

RESUMEN

Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity. Two of them have been chosen in this study as representatives of different structural families: a biscationic biphenyl derivative of thieno[3,2-d]pyrimidinium substituted with a cyclic amine (here referred to as Fa22) and a biscationic biphenyl thioethano derivative of 7-chloro-quinolinium substituted with a pyrrolidinic moiety (here referred to as PL48). However, the potential use of these types of compounds in systemic treatments is hampered because of their low specificity. In fact, to enter the cell and reach their target, these inhibitors use choline transporters and inhibit choline uptake, being that one of the causes of their toxicity. One way to solve this problem could be allowing their entrance into the cells by alternative ways. With this goal, MamC-mediated magnetic nanoparticles (BMNPs), already proven effective drug nanocarriers, have been used to immobilize Fa22 and PL48. The idea is to let BMNPs enter the cell (they enter the cell by endocytosis) carrying these molecules, and, therefore, offering another way in for these compounds. In the present study, we demonstrate that the coupling of Fa22 and PL48 to BMNPs allows these molecules to enter the tumoral cell without completely inhibiting choline uptake, so, therefore, the use of Fa22 and PL48 in these nanoformulations reduces the toxicity compared to that of the soluble drugs. Moreover, the nanoassemblies Fa22-BMNPs and PL48-BMNPs allow the combination of chemotherapy and local hyperthermia therapies for a enhanced cytotoxic effect on the tumoral HepG2 cell line. The consistency of the results, independently of the drug structure, may indicate that this behavior could be extended to other ChoKα1 inhibitors, opening up a possibility for their potential use in clinics.


Asunto(s)
Colina Quinasa , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/síntesis química , Proliferación Celular/efectos de los fármacos , Colina Quinasa/antagonistas & inhibidores , Colina Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Nanopartículas de Magnetita/química , Estructura Molecular , Relación Estructura-Actividad , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674876

RESUMEN

The use of nanoparticles in medicine is sometimes hampered by their potential to activate immune cells, eliciting inflammation or allergy. We investigated whether magnetic nanoparticles (MNPs) or biomimetic magnetic nanoparticles (BMNPs) affect relevant activities of human monocytes. We found that the nanoparticles neither elicited the production of pro-inflammatory mediators IL-6 and TNFα by resting monocytes (when BMNP dose < 300 µg/mL) nor enhanced their secretion induced by R848, a molecule engaging virus-recognizing receptors, or bacterial lipopolysaccharide (LPS). MNPs and BMNPs neither induced the generation of reactive oxygen species (ROS), nor affected the ROS production elicited by the NADPH oxidase activator phorbol myristate acetate (PMA) or the fungal derivative ß-glucan. BMNPs, but not MNPs, caused an up-regulation of the maturation markers CD80, CD83, and CD86 in immature monocyte-derived dendritic cells (DCs), whereas both nanoparticles did not affect the LPS-induced expression of these markers. Moreover, the nanoparticles were greedily ingested by monocytes and DCs without altering their viability. Therefore, these nanoparticles are candidates for medical applications because they do not activate pro-inflammatory activities of monocytes. Furthermore, their ability to stimulate DC maturation could be used for the design of vaccines. Moreover, harmlessly engulfed nanoparticles could be vehicles to carry molecules inside the immune cells to regulate the immune response.


Asunto(s)
Nanopartículas de Magnetita , Monocitos , Humanos , Monocitos/metabolismo , Diferenciación Celular , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Dendríticas , Citocinas/metabolismo , Células Cultivadas
3.
Int J Nanomedicine ; 19: 1843-1865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414530

RESUMEN

Purpose: The lack of specificity of conventional chemotherapy is one of the main difficulties to be solved in cancer therapy. Biomimetic magnetoliposomes are successful chemotherapy controlled-release systems, hyperthermia, and active targeting agents by functionalization of their surface with monoclonal antibodies. The membrane receptor Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) stands out as colorectal cancer (CRC) biomarker and appears to be related to treatment resistance and the development of metastasis. The aim of this study was to assess the effectiveness and safety of LGR5-targeted biomimetic magnetoliposomes loaded with oxaliplatin (OXA) or 5-fluorouracil (5-FU) in the selective treatment of CRC and their possible application in hyperthermia. Methods: Synthesis, characterization and determination of heating capacity of magnetoliposomes transporting OXA or 5-FU (with and without LGR5 functionalization) were conducted. In vitro antitumoral activity was assayed in multiple colorectal cell lines at different times of exposition. In addition to this, cell internalization was studied by Prussian Blue staining, flow cytometry and fluorescence microscopy. In vivo acute toxicity of magnetoliposomes was performed to evaluate iron-related toxicity. Results: OXA and 5-FU loaded magnetoliposomes functionalized with LGR5 antibody showed higher cellular uptake than non-targeted nanoformulation with a reduction of the percentage of proliferation in colon cancer cell lines up to 3.2-fold of the IC50 value compared to that of free drug. The differences between non-targeted and targeted nanoformulations were more evident after short exposure times (4 and 8 hours). Interestingly, assays in the MC38 transduced cells with reduced LGR5 expression (MC38-L(-)), showed lower cell internalization of LGR5-targeted magnetoliposomes compared to non-transduced MC38 cell line. In addition, magnetoliposomes showed an in vitro favorable heating response under magnetic excitation and great iron-related biocompatibility data in vivo. Conclusion: Drug-loaded magnetoliposomes functionalized with anti-LGR5 antibodies could be a promising CRC treatment strategy for LGR5+ targeted chemotherapy, magnetic hyperthermia, and both in combination.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Hipertermia Inducida , Humanos , Biomimética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Fluorouracilo/uso terapéutico , Oxaliplatino/uso terapéutico , Hierro , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología
4.
Talanta ; 258: 124406, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870155

RESUMEN

The use of enzymes immobilized on magnetic nanoparticles to detect contaminants in aqueous samples has gained interest, since it allows the magnetic control, concentration and reuse of the enzymes. In this work, the detection of trace amounts of organophosphate pesticides (chlorpyrifos) and antibiotics (penicillin G) in water was attained by developing a nanoassembly formed by either inorganic or biomimetic magnetic nanoparticles used as substrates to immobilize acetylcholinesterase (AChE) and ß-lactamase (BL). Other than the substrate, the optimization of the nanoassembly was done by testing enzyme immobilization both through electrostatic interaction (also reinforced with glutaraldehyde) and covalent bonds (by carbodiimide chemistry). Temperature (25 °C), ionic strength (150 mM NaCl) and pH (7) were set to ensure enzymatic stability and to allow both the nanoparticles and the enzymes to present ionic charges that would allow electrostatic interaction. Under these conditions, the enzyme load on the nanoparticles was ⁓0.1 mg enzyme per mg nanoparticles, and the preserved activity after immobilization was 50-60% of the specific activity of the free enzyme, being covalent bonding the one which yielded better results. Covalent nanoassemblies could detect trace concentrations of pollutants down to 1.43 nM chlorpyrifos and 0.28 nM penicillin G. They even permitted the quantification of 14.3 µM chlorpyrifos and 2.8 µM penicillin G. Also, immobilization conferred higher stability to AChE (⁓94% activity after 20 days storage at 4 °C) and allowed to reuse the BL up to 12 cycles.


Asunto(s)
Técnicas Biosensibles , Cloropirifos , Contaminantes Ambientales , Nanopartículas de Magnetita , Acetilcolinesterasa/química , Nanopartículas de Magnetita/química , Agua , beta-Lactamasas , Enzimas Inmovilizadas/química , Temperatura , Técnicas Biosensibles/métodos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA