Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemphyschem ; : e202400106, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837728

RESUMEN

We present spectra of the first overtone vibration transition of C-H/ O-H stretch (2ν1) in HCO+ and HOC+, recorded using a laser induced reaction action scheme inside a cryogenic 22 pole radio frequency trap. Band origins have been located at 6078.68411(19) and 6360.17630(26) cm-1, respectively. We introduce a technique based on mass selective ejection from the ion trap for recording background free action spectra. Varying the number density of the neutral action scheme reactant (CO2 and Ar, respectively) and collisional partner reactant inside the ion trap, permitted us to estimate the radiative lifetime of the state to be 1.53(34) and 1.22(34) ms, respectively, and the collisional quenching rates of HCO+(2ν1) with He, H2, and N2.

2.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37347134

RESUMEN

The experimental determination of the reaction rate coefficients for production and destruction of HCN+ and HNC+ in collision with H2 is presented. A variable-temperature, 22-pole radio frequency ion trap was used to study the reactions in the temperature range 17-250 K. The obtained rate coefficients for the reaction of CN+ and HCN+ with H2 are close to the collisional (Langevin) value, whereas that for the reaction of HNC+ with H2 is quickly decreasing with increasing temperature. The product branching ratios for the reaction of CN+ with H2 are also reported and show a notable decrease of the HNC+ product with respect to the HCN+ product with increasing temperature. These measurements have consequences for current astrochemical models of cyanide chemistry, in particular, for the HCNH+ cation.


Asunto(s)
Cianuros , Temperatura
3.
J Phys Chem A ; 123(38): 8135-8147, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31461278

RESUMEN

The ionic polymerization of acetylene in cold plasmas of C2H2/He and C2H2/Ar has been experimentally studied and modeled in radio frequency (rf) discharges with conditions selected to avoid particle formation. Steady-state distributions of positive and negative ions were measured with mass spectrometry. All the measured distributions are dominated by ions with an even number of carbon atoms, reflecting the characteristic polyyne structures typical for the polymerization of acetylene. The distributions show a monotonic decrease in intensity from ions with two carbon atoms until the highest number of atoms detected. For cations, the distributions extend until 12 carbon atoms. The anion distributions extend further, and negative ions with 20 C atoms are observed in the C2H2/Ar plasma. From the measured mass spectra it is not possible to decide on the possible presence of aromatic species in ions with more than six carbon atoms. A simple model assuming a homogeneous discharge was used to describe the plasma kinetics and could account for the measured ion distributions with reasonable values of charge density and electron temperature. The results of this work stress the important role of the vinylidene anion and indicate that Ar and He do not have much influence on the carbon chemistry.

4.
Phys Chem Chem Phys ; 19(2): 1352-1360, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27975091

RESUMEN

A theoretical study of the structure and mid infrared (IR) spectra of interstellar hydrocarbon dust analogs is presented, based on DFT calculations of amorphous solids. The basic molecular structures for these solids are taken from two competing literature models. The first model considers small aromatic units linked by aliphatic chains. The second one assumes a polyaromatic core with hydrogen and methyl substituents at the edges. The calculated spectra are in reasonably good agreement with those of aliphatic-rich and graphitic-rich samples of hydrogenated amorphous carbon (HAC) generated in our laboratory. The theoretical analysis allows the assignment of the main vibrations in the HAC spectra and shows that there is a large degree of mode mixing. The calculated spectra show a marked dependence on the density of the model solids, which evinces the strong influence of the environment on the strengths of the vibrational modes. The present results indicate that the current procedure of estimating the hydrogen and graphitic content of HAC samples through the decomposition of IR features into vibrational modes of individual functional groups is problematic owing to the mentioned mode mixing and to the difficulty of assigning reliable and unique band strengths to the various molecular vibrations. Current band strengths from the literature might overestimate polyaromatic structures. Comparison with astronomical observations suggests that the average structure of carbonaceous dust in the diffuse interstellar medium lies probably in between those of the two models considered, though closer to the more aliphatic structure.

5.
Phys Chem Chem Phys ; 13(20): 9655-66, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21491042

RESUMEN

Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of monoatomic ions H(+) and D(+), even at room temperature. The final H(+)/D(+) ratio is determined to a great extent by proton (and deuteron) exchange, which favours the enhancement of H(+) and the concomitant decrease of D(+).

6.
Phys Chem Chem Phys ; 13(43): 19561-72, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21984202

RESUMEN

The chemistry in low pressure (0.8-8 Pa) plasmas of H(2) + 10% N(2) mixtures has been experimentally investigated in a hollow cathode dc reactor using electrical probes for the estimation of electron temperatures and densities, and mass spectrometry to determine the concentration of ions and stable neutral species. The analysis of the measurements by means of a kinetic model has allowed the identification of the main physicochemical mechanisms responsible for the observed distributions of neutrals and ions and for their evolution with discharge pressure. The chemistry of neutral species is dominated by the formation of appreciable amounts of NH(3) at the metallic walls of the reactor through the successive hydrogenation of atomic nitrogen and nitrogen containing radicals. Both Eley-Rideal and Langmuir-Hinshelwood mechanisms are needed in the chain of hydrogenation steps in order to account satisfactorily for the observed ammonia concentrations, which, in the steady state, are found to reach values ~30-70% of those of N(2). The ionic composition of the plasma, which is entirely due to gas-phase processes, is the result of a competition between direct electron impact dissociation, more relevant for high electron temperatures (lower pressures), and ion-molecule chemistry that prevails for the lower electron temperatures (higher pressures). At the lowest pressure, products from the protonation of the precursor molecules (H(3)(+), N(2)H(+) and NH(4)(+)) and others from direct ionization (H(2)(+) and NH(3)(+)) are found in comparable amounts. At the higher pressures, the ionic distribution is largely dominated by ammonium. It is found that collisions of H(3)(+), NH(3)(+) and N(2)H(+) with the minor neutral component NH(3) are to a great extent responsible for the final prevalence of NH(4)(+).

7.
Astrophys J ; 906(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33594293

RESUMEN

Silicon is present in interstellar dust grains, meteorites and asteroids, and to date thirteen silicon-bearing molecules have been detected in the gas-phase towards late-type stars or molecular clouds, including silane and silane derivatives. In this work, we have experimentally studied the interaction between atomic silicon and hydrogen under physical conditions mimicking those at the atmosphere of evolved stars. We have found that the chemistry of Si, H and H2 efficiently produces silane (SiH4), disilane (Si2H6) and amorphous hydrogenated silicon (a-Si:H) grains. Silane has been definitely detected towards the carbon-rich star IRC+10216, while disilane has not been detected in space yet. Thus, based on our results, we propose that gas-phase reactions of atomic Si with H and H2 are a plausible source of silane in C-rich AGBs, although its contribution to the total SiH4 abundance may be low in comparison with the suggested formation route by catalytic reactions on the surface of dust grains. In addition, the produced a-Si:H dust analogs decompose into SiH4 and Si2H6 at temperatures above 500 K, suggesting an additional mechanism of formation of these species in envelopes around evolved stars. We have also found that the exposure of these dust analogs to water vapor leads to the incorporation of oxygen into Si-O-Si and Si-OH groups at the expense of SiH moieties, which implies that, if this type of grains are present in the interstellar medium, they will be probably processed into silicates through the interaction with water ices covering the surface of dust grains.

8.
Astrophys J ; 831(1)2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28133388

RESUMEN

The effects of cosmic rays on the carriers of the interstellar 3.4 µm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 µm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

9.
Faraday Discuss ; 168: 267-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25302385

RESUMEN

The effect of UV photon (120-200 nm) and electron (2 keV) irradiation of analogues of interstellar carbonaceous dust and of glycine were investigated by means of IR spectroscopy. Films of hydrogenated amorphous carbon (HAC), taken as dust analogues, were found to be stable under UV photon and electron bombardment. High fluences of photons and electrons, of the order of 10(19) cm(-2), were needed for a film depletion of a few percent. UV photons were energetically more effective than electrons for depletion and led to a certain dehydrogenation of the HAC samples, whereas electrons led seemingly to a gradual erosion with no appreciable changes in the hydrocarbon structure. The rates of change observed may be relevant over the lifetime of a diffuse cloud, but cannot account for the rapid changes in hydrocarbon IR bands during the evolution of some proto-planetary nebulae. Glycine samples under the same photon and electron fluxes decay at a much faster rate, but tend usually to an equilibrium value different from zero, especially at low temperatures. Reversible reactions re-forming glycine, or the build-up of less transparent products, could explain this behavior. CO2 and methylamine were identified as UV photoproducts. Electron irradiation led to a gradual disappearance of the glycine layers, also with formation of CO2. No other reaction products were clearly identified. The thicker glycine layers (a few hundred nm) were not wholly depleted, but a film of the order of the electron penetration depth (80 nm), was totally destroyed with an electron fluence of -1 x 10(18) cm(-2). A 60 nm ice layer on top of glycine provided only partial shielding from the 2 keV electrons. From an energetic point of view, 2 keV electrons are less efficient than UV photons and, according to literature data, much less efficient than MeV protons for the destruction of glycine. The use of keV electrons to simulate effects of cosmic rays on analogues of interstellar grains should be taken with care, due to the low penetration depths of electrons in many samples of interest.

10.
RSC Adv ; 4(107): 62030-62041, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26702354

RESUMEN

The recent discovery of ArH+ in the interstellar medium has awakened the interest in the chemistry of this ion. In this work, the ion-molecule kinetics of cold plasmas of Ar/H2 is investigated in glow discharges spanning the whole range of [H2]/([H2]+[Ar]) proportions for two pressures, 1.5 and 8 Pa. Ion concentrations are determined by mass spectrometry, and electron temperatures and densities, with Langmuir probes. A kinetic model is used for the interpretation of the results. The selection of experimental conditions evinces relevant changes with plasma pressure in the ion distributions dependence with the H2 fraction, particularly for the major ions: Ar+, ArH+ and H3+. At 1.5 Pa, ArH+ prevails for a wide interval of H2 fractions: 0.3<[H2]/([H2]+[Ar])<0.7. Nevertheless, a pronounced displacement of the ArH+ maximum towards the lowest H2 fractions is observed at 8 Pa, in detriment of Ar+, which becomes restricted to very small [H2]/([H2]+[Ar]) ratios, whereas H3+ becomes dominant for all [H2]/([H2]+[Ar]) > 0.1. The analysis of the data with the kinetic model allows the identification of the sources and sinks of the major ions over the whole range of experimental conditions sampled. Two key factors turn out to be responsible for the different ion distributions observed: the electron temperature, which determines the rate of Ar+ formation and thus of ArH+, and the equilibrium ArH+ + H2 ⇄ H3+ + Ar, which can be strongly dependent of the degree of vibrational excitation of H3+. The results are discussed and compared with previously published data on other Ar/H2 plasmas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA