Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38187640

RESUMEN

In vertebrate sexual development, two important steroid hormones, testosterone and estrogen, regu-late the sex-specific development of many tissues. In contrast, invertebrates utilize a single steroid hormone, ecdysone, to regulate developmental timing in both sexes. However, here we show that in Drosophila melanogaster, sex-specific ecdysone (E) signaling controls important aspects of gonad sexual dimorphism. Rather than being regulated at the level of hormone production, hor-mone activity is regulated cell-autonomously through sex-specific hormone reception. Ecdysone receptor (EcR) expression is restricted to the developing ovary and is repressed in the testis at a time when ecdysone initiates ovary morphogenesis. Interestingly, EcR expression is regulated downstream of the sex determination factor Doublesex (Dsx), the founding member of the Dsx/Mab3 Related Transcription Factor (DMRT) family that regulates gonad development in all animals. E signaling is required for normal ovary development1,2, and ectopic activation of E sig-naling in the testis antagonized stem cell niche identity and feminized somatic support cells, which were transformed into follicle-like cells. This work demonstrates that invertebrates can also use steroid hormone signaling to control sex-specific development. Further, it may help explain recent work showing that vertebrate sexual development is surprisingly cell-autonomous. For example, chickens utilize testosterone and estrogen to control sex-specific development, but when they have a mixture of cells with male and female genotypes, the male cells develop as male and the female cells develop as female despite exposure to the same circulating hormones3. Sex-specific regulation of steroid hormone signaling may well underly such cell-autonomous sexual fate choices in verte-brates as it does in Drosophila.

2.
Cell Genom ; 2(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36212030

RESUMEN

Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks. A pattern of overlapping Sox- and Six-family TF gene expression and binding motifs was detected, suggesting a combinatorial program of TFs driving regeneration and cell identity. Pseudotime analysis of single-cell transcriptomic data suggested that support cells within the sensory epithelium changed cell identity to a "progenitor" cell population that could differentiate into hair cells. We identified a 2.6 kb DNA enhancer upstream of the sox2 promoter that, when deleted, showed a dominant phenotype that resulted in a hair-cell-regeneration-specific deficit in both the lateral line and adult inner ear.

3.
Front Cell Neurosci ; 15: 721950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489643

RESUMEN

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.

4.
Dis Model Mech ; 12(12)2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31727854

RESUMEN

Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.


Asunto(s)
Adenilato Quinasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Sensorineural/metabolismo , Leucopenia/metabolismo , Regeneración , Inmunodeficiencia Combinada Grave/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Muerte Celular , Línea Celular , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Trasplante de Células Madre Hematopoyéticas , Leucopenia/genética , Microscopía Confocal , Estrés Oxidativo , Fenotipo , Inmunodeficiencia Combinada Grave/genética , Estrés Fisiológico , Pez Cebra
5.
NPJ Regen Med ; 3: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872546

RESUMEN

Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

6.
G3 (Bethesda) ; 7(2): 719-722, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28040780

RESUMEN

Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.


Asunto(s)
Proteínas Bacterianas/genética , Endonucleasas/genética , Edición Génica/métodos , Marcación de Gen/métodos , ARN Guía de Kinetoplastida/genética , Acidaminococcus/enzimología , Acidaminococcus/genética , Animales , Sistemas CRISPR-Cas/genética , Ratones , ARN Mensajero/genética
7.
Dev Cell ; 31(6): 761-73, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25535918

RESUMEN

Primary sex-determination "switches" evolve rapidly, but Doublesex (DSX)-related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSX(F) and DSX(M)), but little is known about how dsx controls sexual development, whether DSX(F) and DSX(M) bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSX(F) and DSX(M) bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Animales , Animales Modificados Genéticamente , Sitios de Unión , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Fenotipo , Interferencia de ARN , Análisis de Secuencia de ADN , Factores Sexuales , Factores de Transcripción/metabolismo
8.
Spermatogenesis ; 2(3): 129-136, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23087832

RESUMEN

The creation of sexual dimorphism in the gonads is essential for producing the male and female gametes required for sexual reproduction. Sexual development of the gonads involves both somatic cells and germ cells, which often undergo sex determination by different mechanisms. While many sex-specific characteristics evolve rapidly and are very different between animal species, gonad function and the formation of sperm and eggs appear more similar and may be more conserved. Consistent with this, the doublesex/mab3 Related Transcription factors (DMRTs) are important for gonad sexual dimorphism in a wide range of animals, including flies, worms and mammals. Here we explore how sexual dimorphism is regulated in the Drosophila gonad, focusing on recent discoveries relating to testis development. We will discuss how sex determination in both the germline and the soma are utilized to create a testis, including the role of the key somatic sex determination factor doublesex.

9.
Nat Cell Biol ; 12(6): 553-562, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436477

RESUMEN

The BH3-only BID protein (BH3-interacting domain death agonist) has a critical function in the death-receptor pathway in the liver by triggering mitochondrial outer membrane permeabilization (MOMP). Here we show that MTCH2/MIMP (mitochondrial carrier homologue 2/Met-induced mitochondrial protein), a novel truncated BID (tBID)-interacting protein, is a surface-exposed outer mitochondrial membrane protein that facilitates the recruitment of tBID to mitochondria. Knockout of MTCH2/MIMP in embryonic stem cells and in mouse embryonic fibroblasts hinders the recruitment of tBID to mitochondria, the activation of Bax/Bak, MOMP, and apoptosis. Moreover, conditional knockout of MTCH2/MIMP in the liver decreases the sensitivity of mice to Fas-induced hepatocellular apoptosis and prevents the recruitment of tBID to liver mitochondria both in vivo and in vitro. In contrast, MTCH2/MIMP deletion had no effect on apoptosis induced by other pro-apoptotic Bcl-2 family members and no detectable effect on the outer membrane lipid composition. These loss-of-function models indicate that MTCH2/MIMP has a critical function in liver apoptosis by regulating the recruitment of tBID to mitochondria.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/fisiología , Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/metabolismo , Receptores de Muerte Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA