RESUMEN
Velvet ants (Hymenoptera: Mutillidae) are a family of solitary parasitoid wasps that are renowned for their painful stings. We explored the chemistry underlying the stings of mutillid wasps of the genus Dasymutilla Ashmead. Detailed analyses of the venom composition of five species revealed that they are composed primarily of peptides. We found that two kinds of mutillid venom peptide appear to be primarily responsible for the painful effects of envenomation. These same peptides also have defensive utility against invertebrates, since they were able to incapacitate and kill honeybees. Both act directly on cell membranes where they directly increase ion conductivity. The defensive venom peptides of Dasymutilla bear a striking similarity, in structure and mode of action, to those of the ant Myrmecia gulosa (Fabricius), suggesting either retention of ancestral toxins, or convergence driven by similar life histories and defensive selection pressures. Finally, we propose that other highly expressed Dasymutilla venom peptides may play a role in parasitisation, possible in delay or arrest of host development. This study represents the first detailed account of the composition and function of the venoms of the Mutillidae.
Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/toxicidad , Conducta Animal/efectos de los fármacos , Himenópteros/fisiología , Mordeduras y Picaduras de Insectos/inducido químicamente , Dolor/inducido químicamente , Fragmentos de Péptidos/toxicidad , Secuencia de Aminoácidos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Homología de SecuenciaRESUMEN
Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.
Asunto(s)
Venenos de Araña , Arañas , Animales , Humanos , Venenos de Araña/toxicidad , Venenos de Araña/química , Árboles , Australia , PéptidosRESUMEN
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Asunto(s)
Conotoxinas/química , Conotoxinas/metabolismo , Secuencia de Aminoácidos , Animales , Conotoxinas/clasificación , Caracol Conus/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Relación Estructura-ActividadRESUMEN
Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded ß-sheet, the GXIA backbone shows striking similarity to several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels. Supported by an amphipathic surface, the structural evidence suggests that GXIA is able to embed in the membrane and bind to the voltage sensor domain of a putative ion channel target.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Neurotoxinas/análisis , Neurotoxinas/síntesis química , omega-Conotoxina GVIA/análisis , omega-Conotoxina GVIA/síntesis química , Secuencia de Aminoácidos , Animales , Conotoxinas/análisis , Conotoxinas/síntesis química , Conotoxinas/genética , Caracol Conus , Neurotoxinas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , omega-Conotoxina GVIA/genéticaRESUMEN
The piscivorous cone snail Conus tulipa has evolved a net-hunting strategy, akin to the deadly Conus geographus, and is considered the second most dangerous cone snail to humans. Here, we present the first venomics study of C. tulipa venom using integrated transcriptomic and proteomic approaches. Parallel transcriptomic analysis of two C. tulipa specimens revealed striking differences in conopeptide expression levels (2.5-fold) between individuals, identifying 522 and 328 conotoxin precursors from 18 known gene superfamilies. Despite broad overlap at the superfamily level, only 86 precursors (11%) were common to both specimens. Conantokins (NMDA antagonists) from the superfamily B1 dominated the transcriptome and proteome of C. tulipa venom, along with superfamilies B2, A, O1, O3, con-ikot-ikot and conopressins, plus novel putative conotoxins precursors T1.3, T6.2, T6.3, T6.4 and T8.1. Thus, C. tulipa venom comprised both paralytic (putative ion channel modulating α-, ω-, µ-, δ-) and non-paralytic (conantokins, con-ikot-ikots, conopressins) conotoxins. This venomic study confirms the potential for non-paralytic conotoxins to contribute to the net-hunting strategy of C. tulipa.
Asunto(s)
Conotoxinas/metabolismo , Caracol Conus/fisiología , Secuencia de Aminoácidos , Animales , Biología Computacional , Conotoxinas/genética , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica/métodos , Espectrometría de Masas/métodos , Conducta Predatoria/fisiología , Proteómica/métodos , Análisis de Secuencia de ADNRESUMEN
Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.
Asunto(s)
Vías Biosintéticas/fisiología , Conotoxinas/biosíntesis , Caracol Conus/fisiología , Conducta Predatoria/fisiología , Animales , Variación Biológica Poblacional/fisiología , Cromatografía Liquida/métodos , Biología Computacional , Conotoxinas/química , ADN Complementario/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Proteoma/fisiología , Proteómica/métodos , Análisis de Secuencia de ADN , Espectrometría de Masa por Ionización de Electrospray/métodos , Transcriptoma/fisiologíaRESUMEN
The present study was carried out to investigate the hypoglycemic effect of soy isoflavones from hypocotyl in GK diabetic rats. A single administration and long-term administration tests were conducted in GK diabetic rats to test the hypoglycemic effect of soy isoflavones. At the end of long-term administration trial, blood protein, cholesterol, triglyceride, glycosylated serum protein, C-reactive protein, insulin, aminotransferase, lipid peroxide, interleukin-6, tumor necrosis factor-α were estimated. Inhibition of soy isoflavones against α-amylase and α-glucosidase, as well as on glucose uptake into brush border membrane vesicles or Caco-2 cells were determined in vitro. In single administration experiment, soy isoflavones reduced postprandial blood glucose levels in GK rats. In long-term administration, hypoglycemic effect of soy isoflavones was first observed at week 12 and maintained till week 16. A significant reduction in fasting blood glucose, C-reactive protein, and lipid peroxide was noted at week 16. However, there was no significant treatment effect on blood insulin. Furthermore, soy isoflavone administration resulted in significant decreases in glycosylated serum protein, tumor necrosis factor-α, and interleukin-6. Other biochemical parameters, such as protein, cholesterol, triglyceride and aminotransferases were not modified, however. The results in vitro showed that soy isoflavones showed a potent inhibitory effect on intestinal α-glucosidase, but not on pancreatic α-amylase. Soy isoflavones also decreased glucose transport potency into brush border membrane vesicles or Caco-2 cells. It is concluded that soy isoflavones from hypocotyl, performs hypoglycemic function in GK rats with type 2 diabetes, maybe via suppression of carbohydrate digestion and glucose uptake in small intestine.
RESUMEN
BACKGROUND: Most ant venoms consist predominantly of small linear peptides, although some contain disulfide-linked peptides as minor components. However, in striking contrast to other ant species, some Anochetus venoms are composed primarily of disulfide-rich peptides. In this study, we investigated the venom of the ant Anochetus emarginatus with the aim of exploring these novel disulfide-rich peptides. METHODS: The venom peptidome was initially investigated using a combination of reversed-phase HPLC and mass spectrometry, then the amino acid sequences of the major peptides were determined using a combination of Edman degradation and de novo MS/MS sequencing. We focused on one of these peptides, U1-PONTX-Ae1a (Ae1a), because of its novel sequence, which we predicted would form a novel 3D fold. Ae1a was chemically synthesized using Fmoc chemistry and its 3D structure was elucidated using NMR spectroscopy. The peptide was then tested for insecticidal activity and its effect on a range of human ion channels. RESULTS: Seven peptides named poneritoxins (PONTXs) were isolated and sequenced. The three-dimensional structure of synthetic Ae1a revealed a novel, compact scaffold in which a C-terminal ß-hairpin is connected to the N-terminal region via two disulfide bonds. Synthetic Ae1a reversibly paralyzed blowflies and inhibited human L-type voltage-gated calcium channels (CaV1). CONCLUSIONS: Poneritoxins from Anochetus emarginatus venom are a novel class of toxins that are structurally unique among animal venoms. GENERAL SIGNIFICANCE: This study demonstrates that Anochetus ant venoms are a rich source of novel ion channel modulating peptides, some of which might be useful leads for the development of biopesticides.
Asunto(s)
Venenos de Hormiga/química , Secuencias de Aminoácidos , Disulfuros/químicaRESUMEN
To study the inhibitory effect of Rhaponticum uniflorum on apoptosis induced by H2O2 in HepG2 cells. Human HepG2 cells injury models were established by H2O2, then cell survival rate was assayed by MTT method; levels of LDH, ALT, and AST were detected by chemical colorimetric method;SOD activity was detected by xanthine oxidase method; GSH content was detected by dithio-bis-nitrobenzoic acid(DTNB); MDA level was detected by thiobarbituric acid (TBA) method;and the relative activities of Caspase-3, 8 and 9 were measured by Colorimetry. The expression levels of Cleaved Caspase-3(Casp-3), cytochrome(Cyto c), NF-κB, ERK, JNK, p38 MAPK, as well as the phospharylated proteins were determined with Western blotting method. The results showed that R. unifloru had no significant effect on cell viabilities of HepG2 cells at the concentrations of 25-400 mgâ¢L⻹. However, H2O2decreased the cell viabilities, increased the cellular oxidative stress, and up-regulated the protein expressions of Casp-3, cytoplasmic Cyto c, p-JNK and nuclear NF-κB. As compared with the model group,R. unifloru could increase the cell viability, reduce LDH, ALT and AST leakage, reduce the MDA formation, increase the SOD and GSH levels,reduce the relative activities of Caspase-3, 8 and 9, down-regulated the protein expressions of Casp-3 and cytoplasmic Cyto c, and down-regulate the p-JNK and nuclear NF-κB levels.The results indicated that R. unifloru had the inhibitory effect on apoptosis induced by H2O2in HepG2 cells, and the mechanism maybe associated with inhibiting JNK activation and NF-κB nuclear translocation.
Asunto(s)
Apoptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Leuzea/química , Transducción de Señal , Células Hep G2 , Humanos , Peróxido de Hidrógeno , MAP Quinasa Quinasa 4 , FN-kappa B , Estrés OxidativoRESUMEN
Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33-residue conotoxin Φ-MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ-MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two ß-hairpins that resemble the N-terminal domain of granulin. Similar to granulin, Φ-MiXXVIIA promotes cell proliferation (EC50 17.85â µm) while inhibiting apoptosis (EC50 2.2â µm). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ-MiXXVIIA expands the repertoire of disulfide-rich conotoxins that recognize mammalian receptors.
Asunto(s)
Apoptosis/efectos de los fármacos , Conotoxinas/farmacología , Cisteína/química , Granulinas/farmacología , Imitación Molecular , Secuencia de Aminoácidos , Proliferación Celular/efectos de los fármacos , Conotoxinas/química , Disulfuros/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Homología de Secuencia de AminoácidoRESUMEN
Most venomous predators have evolved complex venom primarily to immobilize their prey and secondarily to defend against predators. In a new paradigm, carnivorous marine gastropods of the genus Conus were shown to rapidly and reversibly switch between two types of venoms in response to predatory or defensive stimulus, suggesting that the defensive use of venom may have a more important role in venom evolution and specialization than previously thought. To further investigate this phenomenon, the defensive repertoire of a vermivorous species, Conus planorbis, was deciphered using second-generation sequencing coupled to high-throughput proteomics. The venom gland transcriptome of C. planorbis revealed 182 unique conotoxin precursors from 25 gene superfamilies, with superfamily T dominating in terms of read and paralog numbers. Analysis of the defense-evoked venom revealed that this vermivorous species uses a similarly complex arsenal to deter aggressors as more recently evolved fish- and mollusk-hunting species, with MS/MS validating 23 conotoxin sequences from six superfamilies. Pharmacological characterization of the defensive venom on human receptors identified the nicotinic acetylcholine receptors as a primary target. This work provides the first insights into the composition and biological activity of specifically evolved defensive venoms in vermivorous cone snails.
Asunto(s)
Caracol Conus/metabolismo , Proteoma/metabolismo , Receptores Nicotínicos/metabolismo , Transcriptoma/genética , Animales , Receptores Nicotínicos/genética , Espectrometría de Masas en Tándem , Ponzoñas/metabolismoRESUMEN
Venomous marine cone snails produce a unique and remarkably diverse range of venom peptides (conotoxins and conopeptides) that have proven to be invaluable as pharmacological probes and leads to new therapies. Conus catus is a hook-and-line fish hunter from clade I, with â¼20 conotoxins identified, including the analgesic ω-conotoxin CVID (AM336). The current study unravels the venom composition of C. catus with tandem mass spectrometry and 454 sequencing data. From the venom gland transcriptome, 104 precursors were recovered from 11 superfamilies, with superfamily A (especially κA-) conotoxins dominating (77%) their venom. Proteomic analysis confirmed that κA-conotoxins dominated the predation-evoked milked venom of each of six C. catus analyzed and revealed remarkable intraspecific variation in both the intensity and type of conotoxins. High-throughput FLIPR assays revealed that the predation-evoked venom contained a range of conotoxins targeting the nAChR, Cav, and Nav ion channels, consistent with α- and ω-conotoxins being used for predation by C. catus. However, the κA-conotoxins did not act at these targets but induced potent and rapid immobilization followed by bursts of activity and finally paralysis when injected intramuscularly in zebrafish. Our venomics approach revealed the complexity of the envenomation strategy used by C. catus, which contains a mix of both excitatory and inhibitory venom peptides.
Asunto(s)
Bloqueadores de los Canales de Calcio/aislamiento & purificación , Conotoxinas/aislamiento & purificación , Caracol Conus/química , Venenos de Moluscos/aislamiento & purificación , Antagonistas Nicotínicos/aislamiento & purificación , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Organismos Acuáticos , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/toxicidad , Canales de Calcio/metabolismo , Conotoxinas/química , Conotoxinas/toxicidad , Caracol Conus/fisiología , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Venenos de Moluscos/química , Venenos de Moluscos/toxicidad , Actividad Motora/efectos de los fármacos , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/toxicidad , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/toxicidad , Canales de Potasio/metabolismo , Conducta Predatoria/fisiología , Receptores Nicotínicos/metabolismo , Especificidad de la Especie , Transcriptoma , Pez Cebra/fisiologíaRESUMEN
Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from -15 mV to -25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition.
Asunto(s)
Evolución Biológica , Conotoxinas/genética , Caracol Conus/fisiología , Ratones/fisiología , Dolor , Conducta Predatoria , Secuencia de Aminoácidos , Animales , Conotoxinas/metabolismo , Conotoxinas/farmacología , Caracol Conus/genética , Masculino , Ratones Endogámicos C57BL , Alineación de SecuenciaRESUMEN
Marine cone snails have developed sophisticated chemical strategies to capture prey and defend themselves against predators. Among the vast array of bioactive molecules in their venom, peptide components called conotoxins or conopeptides dominate, with many binding with high affinity and selectivity to a broad range of cellular targets, including receptors and transporters of the nervous system. Whereas the conopeptide gene precursor organization has a conserved topology, the peptides in the venom duct are highly processed. Indeed, deep sequencing transcriptomics has uncovered on average fewer than 100 toxin gene precursors per species, whereas advanced proteomics has revealed >10-fold greater diversity at the peptide level. In the present study, second-generation sequencing technologies coupled to highly sensitive mass spectrometry methods were applied to rapidly uncover the conopeptide diversity in the venom of a worm-hunting species, Conus miles. A total of 662 putative conopeptide encoded sequences were retrieved from transcriptomic data, comprising 48 validated conotoxin sequences that clustered into 10 gene superfamilies, including 3 novel superfamilies and a novel cysteine framework (C-C-C-CCC-C-C) identified at both transcript and peptide levels. A surprisingly large number of conopeptide gene sequences were expressed at low levels, including a series of single amino acid variants, as well as sequences containing deletions and frame and stop codon shifts. Some of the toxin variants generate alternative cleavage sites, interrupted or elongated cysteine frameworks, and highly variable isoforms within families that could be identified at the peptide level. Together with the variable peptide processing identified previously, background genetic and phenotypic levels of biological messiness in venoms contribute to the hypervariability of venom peptides and their ability to evolve rapidly.
Asunto(s)
Conotoxinas/química , Caracol Conus/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Codón de Terminación , Conotoxinas/genética , Conotoxinas/aislamiento & purificación , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Espectrometría de Masas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
Cone snails produce highly complex venom comprising mostly small biologically active peptides known as conotoxins or conopeptides. Early estimates that suggested 50-200 venom peptides are produced per species have been recently increased at least 10-fold using advanced mass spectrometry. To uncover the mechanism(s) responsible for generating this impressive diversity, we used an integrated approach combining second-generation transcriptome sequencing with high sensitivity proteomics. From the venom gland transcriptome of Conus marmoreus, a total of 105 conopeptide precursor sequences from 13 gene superfamilies were identified. Over 60% of these precursors belonged to the three gene superfamilies O1, T, and M, consistent with their high levels of expression, which suggests these conotoxins play an important role in prey capture and/or defense. Seven gene superfamilies not previously identified in C. marmoreus, including five novel superfamilies, were also discovered. To confirm the expression of toxins identified at the transcript level, the injected venom of C. marmoreus was comprehensively analyzed by mass spectrometry, revealing 2710 and 3172 peptides using MALDI and ESI-MS, respectively, and 6254 peptides using an ESI-MS TripleTOF 5600 instrument. All conopeptides derived from transcriptomic sequences could be matched to masses obtained on the TripleTOF within 100 ppm accuracy, with 66 (63%) providing MS/MS coverage that unambiguously confirmed these matches. Comprehensive integration of transcriptomic and proteomic data revealed for the first time that the vast majority of the conopeptide diversity arises from a more limited set of genes through a process of variable peptide processing, which generates conopeptides with alternative cleavage sites, heterogeneous post-translational modifications, and highly variable N- and C-terminal truncations. Variable peptide processing is expected to contribute to the evolution of venoms, and explains how a limited set of â¼ 100 gene transcripts can generate thousands of conopeptides in a single species of cone snail.
Asunto(s)
Conotoxinas/metabolismo , Caracol Conus/metabolismo , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Conotoxinas/química , Conotoxinas/genética , Caracol Conus/genética , Caracol Conus/patogenicidad , ADN Complementario/química , ADN Complementario/genética , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Péptidos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteómica , Alineación de Secuencia , Análisis de Secuencia de ADN , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Transcriptoma/genéticaRESUMEN
α-Conotoxins are competitive antagonists of nicotinic acetylcholine receptors (nAChRs). Their high selectivity and affinity for the various subtypes of nAChRs have led to significant advances in our understanding of the structure and function of these key ion channels. Here we report the discovery of a novel 4/7 α-conotoxin, MrIC from the venom duct of Conus marmoreus, which acts as an agonist at the endogenous human α7 nAChR in SH-SY5Y cells pretreated with PNU120596 (PNU). This unique agonist activity of MrIC at α7 nAChRs may guide the development of novel α7 nAChR modulators.
Asunto(s)
Conotoxinas/química , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Conotoxinas/farmacología , Caracol Conus , Humanos , Isoxazoles/farmacología , Datos de Secuencia Molecular , Compuestos de Fenilurea/farmacologíaRESUMEN
ConoServer (http://www.conoserver.org) is a database specializing in the sequences and structures of conopeptides, which are toxins expressed by marine cone snails. Cone snails are carnivorous gastropods, which hunt their prey using a cocktail of toxins that potently subvert nervous system function. The ability of these toxins to specifically target receptors, channels and transporters of the nervous system has attracted considerable interest for their use in physiological research and as drug leads. Since the founding publication on ConoServer in 2008, the number of entries in the database has nearly doubled, the interface has been redesigned and new annotations have been added, including a more detailed description of cone snail species, biological activity measurements and information regarding the identification of each sequence. Automatically updated statistics on classification schemes, three-dimensional structures, conopeptide-bearing species and endoplasmic reticulum signal sequence conservation trends, provide a convenient overview of current knowledge on conopeptides. Transcriptomics and proteomics have began generating massive numbers of new conopeptide sequences, and two dedicated tools have been recently implemented in ConoServer to standardize the analysis of conopeptide precursor sequences and to help in the identification by mass spectrometry of toxins whose sequences were predicted at the nucleic acid level.
Asunto(s)
Conotoxinas/química , Bases de Datos de Proteínas , Péptidos/química , Animales , Conotoxinas/genética , Péptidos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteómica , Análisis de Secuencia de Proteína , Programas Informáticos , Interfaz Usuario-ComputadorRESUMEN
BACKGROUND: Conopeptides, often generically referred to as conotoxins, are small neurotoxins found in the venom of predatory marine cone snails. These molecules are highly stable and are able to efficiently and selectively interact with a wide variety of heterologous receptors and channels, making them valuable pharmacological probes and potential drug leads. Recent advances in next-generation RNA sequencing and high-throughput proteomics have led to the generation of large data sets that require purpose-built and dedicated bioinformatics tools for efficient data mining. RESULTS: Here we describe ConoSorter, an algorithm that categorizes cDNA or protein sequences into conopeptide superfamilies and classes based on their signal, pro- and mature region sequence composition. ConoSorter also catalogues key sequence characteristics (including relative sequence frequency, length, number of cysteines, N-terminal hydrophobicity, sequence similarity score) and automatically searches the ConoServer database for known precursor sequences, facilitating identification of known and novel conopeptides. When applied to ConoServer and UniProtKB/Swiss-Prot databases, ConoSorter is able to recognize 100% of known conotoxin superfamilies and classes with a minimum species specificity of 99%. As a proof of concept, we performed a reanalysis of Conus marmoreus venom duct transcriptome and (i) correctly classified all sequences previously annotated, (ii) identified 158 novel precursor conopeptide transcripts, 106 of which were confirmed by protein mass spectrometry, and (iii) identified another 13 novel conotoxin gene superfamilies. CONCLUSIONS: Taken together, these findings indicate that ConoSorter is not only capable of robust classification of known conopeptides from large RNA data sets, but can also facilitate de novo identification of conopeptides which may have pharmaceutical importance.
Asunto(s)
Algoritmos , Biología Computacional/métodos , Conotoxinas/metabolismo , Caracol Conus/genética , Ponzoñas/metabolismo , Secuencia de Aminoácidos , Animales , Conotoxinas/análisis , Conotoxinas/química , Caracol Conus/metabolismo , Bases de Datos Genéticas , Espectrometría de Masas , Datos de Secuencia Molecular , Alineación de Secuencia , TranscriptomaRESUMEN
As primitive metazoa, sea anemones are rich in various bioactive peptide neurotoxins. These peptides have been applied to neuroscience research tools or directly developed as marine drugs. To date, more than 1100 species of sea anemones have been reported, but only 5% of the species have been used to isolate and identify sea anemone peptide neurotoxins. There is an urgent need for more systematic discovery and study of peptide neurotoxins in sea anemones. In this review, we have gathered the currently available methods from crude venom purification and gene cloning to venom multiomics, employing these techniques for discovering novel sea anemone peptide neurotoxins. In addition, the three-dimensional structures and targets of sea anemone peptide neurotoxins are summarized. Therefore, the purpose of this review is to provide a reference for the discovery, development, and utilization of sea anemone peptide neurotoxins.
Asunto(s)
Anémonas de Mar , Animales , Neurotoxinas/toxicidad , PéptidosRESUMEN
The short disulfide-rich α-conotoxins derived from the venom of Conus snails comprise a conserved CICII(m)CIII(n)CIV cysteine framework (m and n, number of amino acids) and the majority antagonize nicotinic acetylcholine receptors (nAChRs). Depending on disulfide connectivity, α-conotoxins can exist as either globular (CI-CIII, CII-CIV), ribbon (CI-CIV, CII-CIII) or bead (CI-CII, CIII-CIV) isomers. In the present study, C. geographus α-conotoxins GI, GIB, G1.5 and G1.9 were chemically synthesized as globular and ribbon isomers and their activity investigated at human nAChRs expressed in Xenopus oocytes using the two-electrode voltage clamp recording technique. Both the globular and ribbon isomers of the 3/5 (m/n) α-conotoxins GI and GIB selectively inhibit heterologous human muscle-type α1ß1δε nAChRs, whereas G1.5, a 4/7 α-conotoxin, selectively antagonizes neuronal (non-muscle) nAChR subtypes particularly human α3ß2, α7 and α9α10 nAChRs. In contrast, globular and ribbon isomers of G1.9, a novel C-terminal elongated 4/8 α-conotoxin exhibited no activity at the human nAChR subtypes studied. This study reinforces earlier observations that 3/5 α-conotoxins selectively target the muscle nAChR subtypes, although interestingly, GIB is also active at α7 and α9 α10 nAChRs. The 4/7 α-conotoxins target human neuronal nAChR subtypes whereas the pharmacology of the 4/8 α-conotoxin remains unknown.