Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 29(16): e202203852, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36562658

RESUMEN

The reaction of nitronyl nitroxide biradical NITPhMeImbis [5-(2-methylimidazole)-1,3-bis(1-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)-benzene] with Ln(hfac)3 ⋅ 2H2 O and Cu(hfac)2 (hfac=hexafluoroacetylacetonate), led to two series of 2p-3d-4f complexes, namely, nona-spin clusters, [Ln2 Cu3 (hfac)12 (NITPhMeImbis)2 ] (Ln=Gd 1, Dy 2), or one-dimensional chains [LnCu2 (hfac)7 (NITPhMeImbis)] (Ln=Y 3, Dy 4, Tb 5) depending on the temperature of the reaction. All five complexes contain a biradical-Ln unit in which the biradical chelates the LnIII ion by the means of one aminoxyl (i. e. NO) group of each NIT unit. For the discrete complexes, a Cu(hfac)2 links two biradical-Ln units via one of the remaining NO groups, while for the chain compounds, the two remaining NO groups of the biradical-Ln moiety are each coordinated to a Cu(hfac)2 unit to form a 1D coordination polymer. Moreover, a terminal Cu(hfac)2 unit is coordinated to the imidazole-N atom of the NITPhMeImbis ligand. Spin dynamics investigations evidenced the onset of slow relaxation of the magnetization for 2, whereas 4 and 5 exhibit a typical single-chain magnet behavior. This highlights the vital role of the 1D spin correlation in the blocking of the magnetization. These results illustrate that from the same basic building blocks, magnetic relaxation can be carefully modulated by structural adjustments.

2.
Chemistry ; 28(65): e202202239, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35979914

RESUMEN

In spite of achievement of a lot of Ln-radical SMMs, how to improve magnetic behavior of Ln-radical system remains challenging. Here, two series of Ln-radical complexes have successfully been built using an imino nitroxide biradical, namely, [Ln2 (hfac)6 (ImPhPyobis)2 ] (LnIII =Gd 1, Tb 2, Dy 3) and [Ln2 Cu2 (hfac)10 (ImPhPyobis)2 ] (LnIII =Gd 4, Dy 5; hfac=hexafluoroacetylacetonate and ImPhPyobis=5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). For these biradical-metal complexes, two imino nitroxide biradicals bind two Ln(III) ions via their oxygen atoms coming from 4-oxypyridinium units to produce a binuclear {Ln2 O2 } unit. Those imino nitroxide groups are free for complexes 1-3, however one of imino nitroxide groups of the biradical is ligated to the copper(II) ion for complexes 4 and 5. The distinct magnetic relaxation behaviors are observed for two Dy derivatives, as revealed by ac magnetic studies: complex 3 presents one magnetic process with the effective energy barrier(Ueff ) of 74.0 K while complex 5 exhibits dual relaxation processes with Ueff values for the fast- and slow-relaxation being 20.2 K and 30.9 K, respectively, which implies that the second coordination sphere of Dy ion plays a critical role for magnetic relaxation.

3.
Opt Express ; 26(2): 1670-1680, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402038

RESUMEN

Localization-based super-resolution microscopy enables imaging of biological structures with sub-diffraction-limited accuracy, but generally requires extended acquisition time. Consequently, stage drift often limits the spatial precision. Previously, we reported a simple method to correct for this by creating an array of 1 µm3 fiducial markers, every ~8 µm, on the coverslip, using UV-nanoimprint lithography (UV-NIL). While this allowed reliable and accurate 3D drift correction, it suffered high autofluorescence background with shorter wavelength illumination, unstable adsorption to the substrate glass surface, and suboptimal biocompatibility. Here, we present an improved fiducial micro-pattern prepared by thermal nanoimprint lithography (T-NIL). The new pattern is made of a thermal plastic material with low fluorescence backgrounds across the wide excitation range, particularly in the blue-region; robust structural stability under cell culturing condition; and a high bio-compatibility in terms of cell viability and adhesion. We demonstrate drift precision to 1.5 nm for lateral (x, y) and 6.1 nm axial (z) axes every 0.2 seconds for a total of 1 min long image acquisition. As a proof of principle, we acquired 4-color wide-field fluorescence images of live mammalian cells; we also acquired super-resolution images of fixed hippocampal neurons, and super-resolution images of live glutamate receptors and postsynaptic density proteins.


Asunto(s)
Marcadores Fiduciales , Aumento de la Imagen/métodos , Microscopía Fluorescente/métodos , Nanotecnología , Neuronas , Impresión , Animales , Materiales Biocompatibles , Fluorescencia , Células HeLa , Hipocampo/citología , Humanos , Neuroglía , Polímeros , Ratas
4.
Dalton Trans ; 53(23): 10007-10017, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38814577

RESUMEN

By employing nitronyl/imino nitroxide biradicals, three Ln-Zn complexes, namely, [Ln2Zn2(hfac)10(ImPhPyobis)2] (LnIII = Gd 1, Dy 2; hfac = hexafluoroacetylacetonate; ImPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) and [Dy2Zn2(hfac)10(NITPhPyobis)2] 3 (NITPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), have been successfully prepared. The three complexes possess {Ln2O2} cores bridged by the oxygen atoms of the 4-oxypyridinium rings of the biradical ligands and one of the imino/nitronyl nitroxide groups of the biradical is coordinated to a ZnII ion, then producing a centrosymmetric tetranuclear six-spin structure. The studies of spin dynamics indicate that complexes 2 and 3 exhibit distinct magnetic relaxation behaviors at zero dc field: complex 2 presents single relaxation with an effective energy barrier (Ueff) of 69.8 K, while complex 3 exhibits double relaxation processes with Ueff values for the fast and slow relaxation being 15.8 K and 50.9 K, respectively. The observed different magnetic relaxation behaviors for the two Dy complexes could be mainly ascribed to the influence of the distinct nitroxide biradical derivatives.

5.
Dalton Trans ; 52(20): 6853-6859, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37144923

RESUMEN

Utilizing a nitronyl nitroxide biradical NITPhPybis [5-(4-pyridyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)-benzene], a new family of isomorphic 2p-3d-4f chains {[LnCu(hfac)5(NITPhPybis)]·CHCl3}n (hfac: hexafluoroacetylacetonate; LnIII: Gd 1; Dy 2; Ho 3; Tb 4) have been successfully produced. In complexes 1-4, the NITPhPybis biradical chelates one LnIII ion through its bis(NIT) moiety while the N donor of pyridine and another uncoordinated NO group of the biradical, respectively, bind one CuII ion, yielding a biradical-Ln-Cu 1D zigzag chain with a unique [Ln-bis(NIT)-Cu-bis(NIT)-Ln] structural motif. DC magnetic studies reveal that ferromagnetic exchanges dominate in these Cu-Ln-biradical chains, originating from the ferromagnetic Ln-NO and NOaxial-Cu exchanges. Non-zero χ'' signals were observed for Dy/Tb-Cu derivatives implying slow magnetic relaxation behavior. The obtained effective energy barrier is Ueff = 18.0 K and τ0 = 2.0 × 10-8 s for the DyCu derivative.

6.
Dalton Trans ; 51(17): 6955-6963, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35451450

RESUMEN

Four novel heptanuclear Ln-Cu complexes with the formula [Ln2Cu(hfac)8(NITPhTzbis)2][LnCu(hfac)5(NITPhTzbis)]2 (LnCu = YCu 1, TbCu 2, DyCu 3 and HoCu 4; hfac = hexafluoroacetylacetonate) were successfully constructed by employing the triazole functionalized nitronyl nitroxide biradical ligand NITPh-Tzbis (NITPh-Tzbis = 5-(1,2,4-triazolyl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). These hetero-tri-spin complexes are composed of two biradical-bridged dinuclear [(LnCu(hfac)5(NITPhTzbis)] units and one trinuclear [Ln2Cu(hfac)8(NITPhTzbis)2] unit which form a heptanuclear supramolecular structure through π-π interactions. Magnetic susceptibility investigations indicate that ferromagnetic exchange interactions dominate at low temperature for this supramolecular system which can be attributed to the Ln-nitroxide exchange and intramolecular NIT⋯NIT coupling mediated by the m-phenylene moiety. The DyCu derivative was found to exhibit a slow magnetic relaxation behavior.

7.
Dalton Trans ; 50(9): 3280-3288, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33587736

RESUMEN

Self-assembling the novel nitronyl nitroxide radical NIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) with Ln(hfac)3·2H2O and Cu(hfac)2 (hfac = hexafluoroacetylacetonate) resulted in two heterometallic complexes with formula [LnCu(hfac)5(NIT-3Py-5-Ph)2] (Ln = Gd 1, Dy 2), in which two NIT-3Py-5-Ph radicals are coordinated with the LnIII ion via their nitroxide units in the cis-arrangement manner and the CuII ion is ligated by the pyridyl N donors of the radicals. Interestingly, when the phenyl group of NIT-3Py-5-Ph was replaced with a p-pyridyl group, a new family of 2D networks, namely, {[Ln(hfac)3][Cu(hfac)2]2(NIT-3Py-5-4Py)2}n (Ln = Gd 3, Tb 4, Dy 5; NIT-3Py-5-4Py = 2-(5-(4-pyridyl)-3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was obtained. In the 2D sheet, each NIT-3Py-5-4Py ligand serves as a µ3-bridge to bind one LnIII center by the aminoxyl moiety and two CuII ions through two pyridine groups to form a 2D structure. The LnIII ion is coordinated by two NO units of two radicals in a trans configuration. DC magnetic measurements indicate that ferromagnetic LnIII-NO exchange occurs in 1-5. AC studies reveal that 2 displays slow relaxation of the magnetization while no such magnetic relaxation is found in complex 5. The observed different magnetic relaxation behaviors of two Dy analogues could be attributed to the different coordination modes of NO groups of the radicals, and the coordination geometry of the Dy center is from C2v in 2 to D2d in 5.

8.
Chem Asian J ; 16(7): 793-800, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33590716

RESUMEN

Four biradical-Ln complexes with different transition metal ions, namely [LnM(hfac)5 (NITPh-PyPzbis)] (MII =MnII and LnIII =Gd 1, Dy 2; MII =NiII and LnIII =Tb 3, Dy 4), were prepared by the reaction of Ln(hfac)3 ⋅ 2H2 O, Mn(hfac)2 ⋅ 2H2 O or Ni(hfac)2 ⋅ 2H2 O with NITPh-PyPzbis biradical (hfac=hexafluoroacetylacetonate, NITPh-PyPzbis=5-(3-(2-pyridinyl)-1H-pyrazol-1-yl)-1,3-bis(1'-oxyl-3'-oxido- 4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). In complexes 1-4, the NITPh-PyPzbis biradical chelates one LnIII ion by means of its aminoxyl moieties and the transition metal ion is introduced through the two N donors from the pyridyl pyrazolyl moiety. Magnetic investigations indicate that complex 4 displays visible maxima in frequency/temperature-dependent χ'' signals with two-step relaxation processes, but complex 2 exhibits no slow magnetization relaxation. The comparison of structure parameters of both Dy complexes indicates that the symmetries of coordination spheres of two Dy ions are D2d for 2 and C2v for 4, which thus probably results in different magnetic relaxation behaviors. This work provides new insight for improving properties of Ln-biradical based SMMs.

9.
Dalton Trans ; 49(30): 10477-10485, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685954

RESUMEN

Three di-nuclear DyIII complexes [Dy2(H2L)2(tfa)]·Cl·3DMF (1), [Dy2(H2L)2(MeO)(SCN)]·MeOH (2) and [Dy2(H2L)2(MeOH)Cl]·Cl·2MeOH (3) were synthesized and structurally and magnetically characterized. The Dy1/Dy2 centers in these complexes are all nine-coordinate with spherical capped square antiprism (local C4v symmetry) environments. All complexes display single-molecule magnet (SMM) behavior under zero applied dc field with their properties dependent on the nature of the magnetic interactions between the DyIII ions. Ab initio calculations substantiate that all DyIII ions show a weakly axial crystal-field environment with the exception of one of the DyIII ions in complex 2. The ground Kramers doublets show modest amounts of quantum tunneling of magnetization that gets blocked by the interaction between the DyIII ions, leading to a thermally activated slow relaxation of magnetization. The interaction between the ions is ferromagnetic and mostly originates from the dipolar interaction. However, anti-ferromagnetic intermolecular interaction plays an important role and in the case of complex 2 it is sufficiently strong to mask the ferromagnetic intramolecular interaction.

10.
Elife ; 62017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28749340

RESUMEN

Previous studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers. We find that >90% of AMPARs labeled with fluorescent dyes or sQDs were diffusing in confined nanodomains in PSDs, which were stable for 15 min or longer. Less than 10% of sQD-AMPARs were extrasynaptic and highly mobile. In contrast, 5-10% of bQD-AMPARs were in PSDs and 90-95% were extrasynaptic as previously observed. Contrary to the hypothesis that AMPAR entry is limited by the occupancy of open PSD 'slots', our findings suggest that AMPARs rapidly enter stable 'nanodomains' in PSDs with lifetime >15 min, and do not accumulate in extrasynaptic membranes.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Densidad Postsináptica/metabolismo , Receptores AMPA/genética , Sinapsis/metabolismo , Animales , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/química , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Neuronas/ultraestructura , Densidad Postsináptica/ultraestructura , Cultivo Primario de Células , Transporte de Proteínas , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Ratas , Receptores AMPA/metabolismo , Coloración y Etiquetado/métodos , Sinapsis/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA