Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Am Chem Soc ; 146(5): 3373-3382, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38272666

RESUMEN

Reticular chemistry effectively yields porous structures with distinct topological lattices for a broad range of applications. Polyhedral oligomeric silsesquioxane (POSS)-based octatopic building blocks with a rare Oh symmetric configuration and attracting inorganic features have great potential for creating three-dimensional (3D) covalent organic frameworks (COFs) with new topologies. However, the intrinsic flexibility and intensive motion of cubane-type POSS molecules make the construction of 3D regular frameworks challenging. Herein, by fastening three or four POSS cores with per aromatic rigid linker from rational steric directions, we successfully developed serial crystalline 3D COFs with unpresented "the" and scu topologies. Both the experimental and theoretical results proved the formation of target 3D POSS-based COFs. The resultant hybrid networks with designable chemical skeletons and high surface areas maintain the superiorities of both the inorganic and organic components, such as their high compatibility with inorganic salts, abundant periodic electroactive sites, excellent thermal stability, and open multilevel nanochannels. Consequently, the polycubane COFs could serve as outstanding solid electrolytes with a high ionic conductivity of 1.23 × 10-4 S cm-1 and a lithium-ion transference number of 0.86 at room temperature. This work offers a pathway to generate ordered lattices with multiconnected flexible cube motifs and enrich the topologies of 3D COFs for potential applications.

2.
J Am Chem Soc ; 145(26): 14417-14426, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339431

RESUMEN

The development of highly luminescent two-dimensional covalent organic frameworks (COFs) for sensing applications remains challenging. To suppress commonly observed photoluminescence quenching of COFs, we propose a strategy involving interrupting the intralayer conjugation and interlayer interactions using cyclohexane as the linker unit. By variation of the building block structures, imine-bonded COFs with various topologies and porosities are obtained. Experimental and theoretical analyses of these COFs disclose high crystallinity and large interlayer distances, demonstrating enhanced emission with record-high photoluminescence quantum yields of up to 57% in the solid state. The resulting cyclohexane-linked COF also exhibits excellent sensing performance for the trace recognition of Fe3+ ions, explosive and toxic picric acid, and phenyl glyoxylic acid as metabolites. These findings inspire a facile and general strategy to develop highly emissive imine-bonded COFs for detecting various molecules.

3.
J Am Chem Soc ; 144(51): 23534-23542, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36512747

RESUMEN

Polyimide covalent organic framework (PI-COF) materials that can realize intrinsic redox reactions by changing the charge state of their electroactive sites are considered as emerging electrode materials for rechargeable devices. However, the highly crystalline PI-COFs with hierarchical porosity are less reported due to the rapid reaction between monomers and the poor reversibility of the polyimidization reaction. Here, we developed a water-assistant synthetic strategy to adjust the reaction rate of polyimidization, and PI-COF (COFTPDA-PMDA) with kgm topology consisting of dual active centers of N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine (TPDA) and pyromellitic dianhydride (PMDA) ligands was successfully synthesized with high crystallinity and porosity. The COFTPDA-PMDA possesses hierarchical micro-/mesoporous channels with the largest surface area (2669 m2/g) in PI-COFs, which can promote the Li+ ions and bulky bis(trifluoromethanesulfonyl)imide (TFSI-) ions in organic electrolyte to sufficiently interact with the dual active sites on COF skeleton to increase the specific capacity of cathode materials. As a cathode material for lithium-ion batteries, COFTPDA-PMDA@50%CNT which integrated high surface area and dual active center of COFTPDA-PMDA with carbon nanotubes via π-π interactions gave a high initial charge capacity of 233 mAh/g (0.5 A/g) and maintains at 80 mAh/g even at a high current density of 5.0 A/g after 1800 cycles.

4.
J Am Chem Soc ; 144(16): 7489-7496, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420808

RESUMEN

Two-dimensional covalent organic frameworks (2D COFs) represent a family of crystalline porous polymers with a long-range order and well-defined open nanochannels that hold great promise for electronics, catalysis, sensing, and energy storage. To date, the development of highly conductive 2D COFs has remained challenging due to the finite π-conjugation along the 2D lattice and charge localization at grain boundaries. Furthermore, the charge transport mechanism within the crystalline framework remains elusive. Here, time- and frequency-resolved terahertz spectroscopy reveals intrinsically Drude-type band transport of charge carriers in semiconducting 2D COF thin films condensed by 1,3,5-tris(4-aminophenyl)benzene (TPB) and 1,3,5-triformylbenzene (TFB). The TPB-TFB COF thin films demonstrate high photoconductivity with a long charge scattering time exceeding 70 fs at room temperature which resembles crystalline inorganic materials. This corresponds to a record charge carrier mobility of 165 ± 10 cm2 V-1 s-1, vastly outperforming that of the state-of-the-art conductive COFs. These results reveal TPB-TFB COF thin films as promising candidates for organic electronics and catalysis and provide insights into the rational design of highly crystalline porous materials for efficient and long-range charge transport.

5.
Angew Chem Int Ed Engl ; 61(5): e202114059, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34870362

RESUMEN

Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.

6.
Angew Chem Int Ed Engl ; 61(9): e202115020, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34931425

RESUMEN

Despite rapid progress over the past decade, most polycondensation systems even upon a small structural variation of the building units eventually result in amorphous polymers other than the desired crystalline covalent organic frameworks. This synthetic dilemma is a central and challenging issue of the field. Here we report a novel approach based on module-patterned polymerization to enable efficient and designed synthesis of crystalline porous polymeric frameworks. This strategy features a wide applicability to allow the use of various knots of different structures, enables polycondensation with diverse linkers, and develops a diversity of novel crystalline 2D polymers and frameworks, as demonstrated by using the C=C bond-formation polycondensation reaction. The new sp2 -carbon frameworks are highly emissive and enable up-conversion luminescence, offer low band gap semiconductors with tunable band structures, and achieve ultrahigh charge mobilities close to theoretically predicted maxima.

7.
J Am Chem Soc ; 143(27): 10403-10412, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34224242

RESUMEN

Dibenzo[hi,st]ovalene (DBOV) has excellent photophysical properties, including strong fluorescence and high ambient stability. Moreover, the optical blinking properties of DBOV have enabled optical super-resolution single-molecule localization microscopy with an imaging resolution beyond the diffraction limit. Various organic and inorganic fluorescent probes have been developed for super-resolution imaging, but those sensitive to pH and/or metal ions have remained elusive. Here, we report a diaza-derivative of DBOV (N-DBOV), synthesized in eight steps with a total yield of 15%. Nitrogen (N)-bearing zigzag edges were formed through oxidative cyclization of amino groups in the last step. UV-vis and fluorescence spectroscopy of N-DBOV revealed its promising optical properties comparable to those of the parent DBOV, while cyclic voltammetry and density functional theory calculations highlighted its lower orbital energy levels and potential n-type semiconductor character. Notably, in contrast to that of the parent DBOV, the strong luminescence of N-DBOV is dependent on pH and the presence of heavy metal ions, indicating the potential of N-DBOV in sensing applications. N-DBOV also exhibited pH-responsive blinking, which enables pH-sensitive super-resolution imaging. Therefore, N-DBOV appears to be a highly promising candidate for fluorescence sensing in biology and environmental analytics.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Grafito/química , Mediciones Luminiscentes/métodos , Nanoestructuras/química , Nitrógeno/química , Cobre/química , Colorantes Fluorescentes/química , Hierro/química , Estructura Molecular
8.
Angew Chem Int Ed Engl ; 59(29): 12162-12169, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32329936

RESUMEN

A strategy is presented for the synthesis of crystalline porous covalent organic frameworks via topology-templated polymerization. The template is based on imine-linked frameworks and their (001) facets seed the C=C bond formation reaction to constitute 2D sp2 carbon-conjugated frameworks. This strategy is applicable to templates with different topologies, enables designed synthesis of frameworks that cannot be prepared via direct polymerization, and creates a series of sp2 carbon frameworks with tetragonal, hexagonal, and kagome topologies. The sp2 carbon frameworks are highly luminescent even in the solid state and exhibit topology-dependent π transmission and exciton migration; these key fundamental π functions are unique to sp2 carbon-conjugated frameworks and cannot be accessible by imine-linked frameworks, amorphous analogues, and 1D conjugated polymers. These results demonstrate an unprecedented strategy for structural and functional designs of covalent organic frameworks.

9.
J Am Chem Soc ; 138(18): 5797-800, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27108740

RESUMEN

Highly luminescent covalent organic frameworks (COFs) are rarely achieved because of the aggregation-caused quenching (ACQ) of π-π stacked layers. Here, we report a general strategy to design highly emissive COFs by introducing an aggregation-induced emission (AIE) mechanism. The integration of AIE-active units into the polygon vertices yields crystalline porous COFs with periodic π-stacked columnar AIE arrays. These columnar AIE π-arrays dominate the luminescence of the COFs, achieve exceptional quantum yield via a synergistic structural locking effect of intralayer covalent bonding and interlayer noncovalent π-π interactions and serve as a highly sensitive sensor to report ammonia down to sub ppm level. Our strategy breaks through the ACQ-based mechanistic limitations of COFs and opens a way to explore highly emissive COF materials.

10.
J Am Chem Soc ; 137(9): 3241-7, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25706112

RESUMEN

A series of two-dimensional covalent organic frameworks (2D COFs) locked with intralayer hydrogen-bonding (H-bonding) interactions were synthesized. The H-bonding interaction sites were located on the edge units of the imine-linked tetragonal porphyrin COFs, and the contents of the H-bonding sites in the COFs were synthetically tuned using a three-component condensation system. The intralayer H-bonding interactions suppress the torsion of the edge units and lock the tetragonal sheets in a planar conformation. This planarization enhances the interlayer interactions and triggers extended π-cloud delocalization over the 2D sheets. Upon AA stacking, the resulting COFs with layered 2D sheets amplify these effects and strongly affect the physical properties of the material, including improving their crystallinity, enhancing their porosity, increasing their light-harvesting capability, reducing their band gap, and enhancing their photocatalytic activity toward the generation of singlet oxygen. These remarkable effects on the structure and properties of the material were observed for both freebase and metalloporphyin COFs. These results imply that exploration of supramolecular ensembles would open a new approach to the structural and functional design of COFs.

11.
Macromol Rapid Commun ; 33(24): 2097-102, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23023517

RESUMEN

Polymethacrylate with semiconducting side chains (P1), synthesized by free radical polymerization, was used as a donor material for polymer solar cells. P1 is of high molecular weight (Mn = 82 kg mol(-1)), good thermal stability, narrow band gap (1.87 eV), and low-lying HOMO energy level (-5.24 eV). P1 possesses not only the good film-forming ability of polymers but also the high purity of small organic molecules. Power conversion efficiencies (PCEs) of 0.63% and 1.22% have been obtained for solar cells with M1:PC71BM and P1:PC71BM as the active layers, respectively. With PC61BM as the acceptor, PCEs of M1 and P1 based devices decrease to 0.61% and 0.76%, respectively. To the best of our knowledge, this is the first report that free radical polymerization can be used to prepare polymer donors for photovoltaic applications.


Asunto(s)
Suministros de Energía Eléctrica , Técnicas Electroquímicas , Ácidos Polimetacrílicos/síntesis química , Semiconductores , Radicales Libres , Estructura Molecular , Peso Molecular , Polimerizacion , Energía Solar , Luz Solar
12.
Nat Commun ; 11(1): 5892, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208746

RESUMEN

Metal single-atom catalysts (M-SACs) have emerged as an attractive concept for promoting heterogeneous reactions, but the synthesis of high-loading M-SACs remains a challenge. Here, we report a multilayer stabilization strategy for constructing M-SACs in nitrogen-, sulfur- and fluorine-co-doped graphitized carbons (M = Fe, Co, Ru, Ir and Pt). Metal precursors are embedded into perfluorotetradecanoic acid multilayers and are further coated with polypyrrole prior to pyrolysis. Aggregation of the metals is thus efficiently inhibited to achieve M-SACs with a high metal loading (~16 wt%). Fe-SAC serves as an efficient oxygen reduction catalyst with half-wave potentials of 0.91 and 0.82 V (versus reversible hydrogen electrode) in alkaline and acid solutions, respectively. Moreover, as an air electrode in zinc-air batteries, Fe-SAC demonstrates a large peak power density of 247.7 mW cm-2 and superior long-term stability. Our versatile method paves an effective way to develop high-loading M-SACs for various applications.

13.
Nat Commun ; 9(1): 4143, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297692

RESUMEN

Covalent organic frameworks enable the topological connection of organic chromophores into π lattices, making them attractive for creating light-emitting polymers that are predesignable for both the primary- and high-order structures. However, owing to linkages, covalent organic frameworks are either unstable or poor luminescent, leaving the practical synthesis of stable light-emitting frameworks challenging. Here, we report the designed synthesis of sp2 carbon-conjugated frameworks that combine stability with light-emitting activity. The C=C linkages topologically connect pyrene knots and arylyenevinylene linkers into two-dimensional all sp2 carbon lattices that are designed to be π conjugated along both the x and y directions and develop layer structures, creating exceptionally stable frameworks. The resulting frameworks are capable of tuning band gap and emission by the linkers, are highly luminescent under various conditions and can be exfoliated to produce brilliant nanosheets. These results suggest a platform based on sp2 carbon frameworks for designing robust photofunctional materials.

14.
Science ; 357(6352): 673-676, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28818940

RESUMEN

We synthesized a two-dimensional (2D) crystalline covalent organic framework (sp2c-COF) that was designed to be fully π-conjugated and constructed from all sp2 carbons by C=C condensation reactions of tetrakis(4-formylphenyl)pyrene and 1,4-phenylenediacetonitrile. The C=C linkages topologically connect pyrene knots at regular intervals into a 2D lattice with π conjugations extended along both x and y directions and develop an eclipsed layer framework rather than the more conventionally obtained disordered structures. The sp2c-COF is a semiconductor with a discrete band gap of 1.9 electron volts and can be chemically oxidized to enhance conductivity by 12 orders of magnitude. The generated radicals are confined on the pyrene knots, enabling the formation of a paramagnetic carbon structure with high spin density. The sp2 carbon framework induces ferromagnetic phase transition to develop spin-spin coherence and align spins unidirectionally across the material.

15.
Sci Rep ; 5: 14650, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26456081

RESUMEN

Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays.

16.
ACS Appl Mater Interfaces ; 6(3): 1601-7, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24450543

RESUMEN

9-Arylidene-9H-fluorene containing donor-acceptor (D-A) alternating polymers P1 and P2 were synthsized and used for the fabrication of polymer solar cells (PSCs). High and low molecular weight P1 (HMW-P1 and LMW-P1) and high molecular weight P2 were prepared to study the influence of molecular weight and the position of alkoxy chains on the photovoltaic performance of PSCs. HMW-P1:PC71BM-based PSCs fabricated from 1,2-dichlorobenzene (DCB) solutions showed a power conversion efficiency (PCE) of 6.26%, while LMW-P1:PC71BM-based PSCs showed poor photovoltaic performance with a PCE of only 2.75%. PCE of HMW-P1:PC71BM-based PSCs was further increased to 6.52% with the addition of 1,8-diiodooctane (DIO) as the additive. Meanwhile, PCE of only 2.51% was obtained for P2:PC71BM-based PSCs. The results indicated that the position of alkoxy substituents on the 9-arylidene-9H-fluorene unit and the molecular weight of polymers are very crucial to the photovoltaic performance of PSCs.

17.
ACS Appl Mater Interfaces ; 5(16): 8076-80, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23879557

RESUMEN

Alcohol soluble fullerene derivative (FN-C60) has been synthesized and used as a cathode interfacial layer for high-efficiency polymer solar cells (PSCs). To examine the function of the FN-C60 interfacial layer, polymer solar cells were fabricated with blends of P3:PC71BM, HXS-1:PC71BM, PDFCDTBT:PC71BM, and PDPQTBT:PC71BM as the active layer. In comparison to the bare Al electrode, power conversion efficiencies (PCEs) of P3:PC71BM, HXS-1:PC71BM, PDFCDTBT:PC71BM, and PDPQTBT:PC71BM based PSCs were increased from 3.50 to 4.64%, 4.69 to 5.25%, 2.70 to 4.60%, and 1.52 to 2.29%, respectively, when FN-C60/Al was used as the electrode. Moreover, the overall photovoltaic performances of PSCs with the FN-C60/Al electrode were better than those of cells with LiF/Al electrode, indicating that FN-C60 is a potential interfacial layer material to replace LiF.


Asunto(s)
Fulerenos/química , Polímeros/química , Energía Solar , Alcoholes/química , Suministros de Energía Eléctrica , Electrodos , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA