Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Immunity ; 43(1): 80-91, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26200012

RESUMEN

The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.


Asunto(s)
Cisteína Endopeptidasas/biosíntesis , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Macrófagos/metabolismo , Receptores de Estrógenos/genética , Receptor Toll-Like 4/inmunología , Acetilación , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Células Cultivadas , Cisteína Endopeptidasas/genética , Activación Enzimática/genética , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos , Macrófagos/inmunología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunología , Choque Séptico/inmunología , Transducción de Señal , Sirtuina 1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Ubiquitinación , Receptor Relacionado con Estrógeno ERRalfa
2.
Nat Immunol ; 12(8): 742-51, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725320

RESUMEN

The orphan nuclear receptor SHP (small heterodimer partner) is a transcriptional corepressor that regulates hepatic metabolic pathways. Here we identified a role for SHP as an intrinsic negative regulator of Toll-like receptor (TLR)-triggered inflammatory responses. SHP-deficient mice were more susceptible to endotoxin-induced sepsis. SHP had dual regulatory functions in a canonical transcription factor NF-κB signaling pathway, acting as both a repressor of transactivation of the NF-κB subunit p65 and an inhibitor of polyubiquitination of the adaptor TRAF6. SHP-mediated inhibition of signaling via the TLR was mimicked by macrophage-stimulating protein (MSP), a strong inducer of SHP expression, via an AMP-activated protein kinase-dependent signaling pathway. Our data identify a previously unrecognized role for SHP in the regulation of TLR signaling.


Asunto(s)
FN-kappa B/inmunología , Receptores Citoplasmáticos y Nucleares/inmunología , Sepsis/inmunología , Receptores Toll-Like/inmunología , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Inmunoprecipitación de Cromatina , Femenino , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/inmunología , Ubiquitinación/inmunología
3.
J Immunol ; 198(8): 3283-3295, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28275133

RESUMEN

The role of peroxisome proliferator-activated receptor α (PPAR-α) in innate host defense is largely unknown. In this study, we show that PPAR-α is essential for antimycobacterial responses via activation of transcription factor EB (TFEB) transcription and inhibition of lipid body formation. PPAR-α deficiency resulted in an increased bacterial load and exaggerated inflammatory responses during mycobacterial infection. PPAR-α agonists promoted autophagy, lysosomal biogenesis, phagosomal maturation, and antimicrobial defense against Mycobacterium tuberculosis or M. bovis bacillus Calmette-Guérin. PPAR-α agonists regulated multiple genes involved in autophagy and lysosomal biogenesis, including Lamp2, Rab7, and Tfeb in bone marrow-derived macrophages. Silencing of TFEB reduced phagosomal maturation and antimicrobial responses, but increased macrophage inflammatory responses during mycobacterial infection. Moreover, PPAR-α activation promoted lipid catabolism and fatty acid ß-oxidation in macrophages during mycobacterial infection. Taken together, our data indicate that PPAR-α mediates antimicrobial responses to mycobacterial infection by inducing TFEB and lipid catabolism.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Inmunidad Innata/inmunología , Metabolismo de los Lípidos/inmunología , Infecciones por Mycobacterium/inmunología , PPAR alfa/inmunología , Animales , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunohistoquímica , Gotas Lipídicas/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium , PPAR alfa/metabolismo , Reacción en Cadena de la Polimerasa
4.
Immunol Cell Biol ; 95(7): 584-592, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28356568

RESUMEN

Inflammasomes are cytosolic multiprotein complexes that cause the release of biologically active interleukin-1ß. The best-characterized inflammasome is the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 or Nod-like receptor protein 3) inflammasome. The NLRP3 inflammasome forms an assembly consisting of the ASC (apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain) adaptor protein and the effector, caspase-1 (cysteine-dependent aspartate-directed protease-1). Numerous agents and ligands derived from pathogens, modified self-cells and the environment induce NLRP3 inflammasome complex formation. NLRP3 inflammasome activation is tightly controlled at the transcriptional and post-translational levels to prevent unwanted excessive inflammation. Recent studies have highlighted the roles and mechanisms of several negative regulators that inhibit the assembly of NLRP3 inflammasome complexes and suppress inflammatory responses. The identification and characterization of new players in the regulation of NLRP3 inflammasome may lead to the development of inflammasome-targeting therapeutics against various inflammatory diseases related to NLRP3 inflammasome-associated pathogenesis.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Animales , Humanos , Modelos Biológicos
5.
J Immunol ; 194(11): 5355-65, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25917095

RESUMEN

MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis-induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis-infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG.


Asunto(s)
Autofagia/genética , Macrófagos/inmunología , MicroARNs/fisiología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Proteínas Supresoras de Tumor/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Línea Celular , Regulación de la Expresión Génica , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Factor 88 de Diferenciación Mieloide , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 2 , Tuberculosis Pulmonar/genética
6.
PLoS Pathog ; 6(12): e1001230, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21187903

RESUMEN

The "enhanced intracellular survival" (eis) gene of Mycobacterium tuberculosis (Mtb) is involved in the intracellular survival of M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS)-dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Δeis) displayed markedly increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of macrophages with Mtb-Δeis increased the production of tumor necrosis factor-α and interleukin-6 over the levels produced by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Δeis (for which NADPH oxidase and mitochondria were largely responsible) rendered the cells highly sensitive to autophagy activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses, macrophages infected with Mtb-Δeis underwent caspase-independent cell death. This cell death was significantly inhibited by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating autophagy, inflammation, and cell death in a redox-dependent manner.


Asunto(s)
Antígenos Bacterianos/fisiología , Autofagia , Proteínas Bacterianas/fisiología , Interacciones Huésped-Patógeno/inmunología , Inflamación , Mycobacterium tuberculosis/fisiología , Transducción de Señal/fisiología , Acetiltransferasas , Animales , Muerte Celular , Inmunidad Innata , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis/química , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
7.
Commun Biol ; 4(1): 1405, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916605

RESUMEN

Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.


Asunto(s)
Animales Modificados Genéticamente/genética , Técnicas de Transferencia de Gen , Genes de Cambio , Transgenes , Pez Cebra/genética , Animales
8.
Clin Epigenetics ; 12(1): 66, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398127

RESUMEN

BACKGROUND: Atherosclerosis is the main cause of cardiovascular diseases such as ischemic stroke and coronary heart disease. Gene-specific promoter methylation changes have been suggested as one of the causes underlying the development of atherosclerosis. We aimed to identify and validate specific genes that are differentially expressed through promoter methylation in atherosclerotic plaques. We performed the present study in four steps: (1) profiling and identification of gene-specific promoter methylation changes in atherosclerotic tissues; (2) validation of the promoter methylation changes of genes in plaques by comparison with non-plaque intima; (3) evaluation of promoter methylation status of the genes in vascular cellular components composing atherosclerotic plaques; and (4) evaluation of promoter methylation differences in genes among monocytes, T cells, and B cells isolated from the blood of ischemic stroke patients. RESULTS: Upon profiling, AIRE1, ALOX12, FANK1, NETO1, and SERHL2 were found to have displayed changes in promoter methylation. Of these, AIRE1 and ALOX12 displayed higher methylation levels in plaques than in non-plaque intima, but lower than those in the buffy coat of blood. Between inflammatory cells, the three genes were significantly less methylated in monocytes than in T and B cells. In the vascular cells, AIRE1 methylation was lower in endothelial and smooth muscle cells. ALOX12 methylation was higher in endothelial, but lower in smooth muscle cells. Immunofluorescence staining showed that co-localization of ALOX12 and AIRE1 was more frequent in CD14(+)-monocytes than in CD4(+)-T cell in plaque than in non-plaque intima. CONCLUSIONS: Promoter methylation changes in AIRE1 and ALOX12 occur in atherosclerosis and can be considered as novel epigenetic markers.


Asunto(s)
Araquidonato 12-Lipooxigenasa/genética , Aterosclerosis/genética , Epigénesis Genética , Factores de Transcripción/genética , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Metilación de ADN , Endotelio Vascular/metabolismo , Linfocitos/metabolismo , Monocitos/metabolismo , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/genética , Regiones Promotoras Genéticas , Proteína AIRE
9.
Nat Commun ; 9(1): 4184, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305619

RESUMEN

Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracellular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, suggesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection.


Asunto(s)
Autofagia , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Interacciones Huésped-Patógeno , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Adenilato Quinasa/metabolismo , Animales , Antibacterianos/farmacología , Autofagia/efectos de los fármacos , Calcio/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Receptores de GABA/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Immune Netw ; 17(2): 77-88, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28458619

RESUMEN

Mitochondria are key organelles involved in energy production, functioning as the metabolic hubs of cells. Recent findings emphasize the emerging role of the mitochondrion as a key intracellular signaling platform regulating innate immune and inflammatory responses. Several mitochondrial proteins and mitochondrial reactive oxygen species have emerged as central players orchestrating the innate immune responses to pathogens and damaging ligands. This review explores our current understanding of the roles played by mitochondria in regulation of innate immunity and inflammatory responses. Recent advances in our understanding of the relationship between autophagy, mitochondria, and inflammasome activation are also briefly discussed. A comprehensive understanding of mitochondrial role in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation, will facilitate development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders.

11.
Microbes Infect ; 19(6): 351-357, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28245983

RESUMEN

Mycobacterium marinum is a pathogenic mycobacterial species closely related to Mycobacterium tuberculosis. In this study, we established a mycobacterial infection model of Drosophila melanogaster to characterize the role played by cg6568, a homolog of the human cathelicidin gene, in the innate defense against infection. Drosophila cg6568 was expressed at various levels during all developmental stages, and the expression levels were modulated by M. marinum in a time-dependent manner. 20-hydroxyecdysone induced Drosophila cg6568 transcription both in vitro and in vivo. Using flies expressing cg6568 RNAi, we found that cg6568 was essential both for D. melanogaster survival and the exertion of antimicrobial effects during M. marinum infection. Thus, we named the gene product a cathelicidin-like antimicrobial protein of D. melanogaster (dCAMP). Our results indicate that dCAMP is crucial in terms of the innate D. melanogaster defense during M. marinum infection.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Mycobacterium marinum , Animales , Péptidos Catiónicos Antimicrobianos/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Ecdisterona/farmacología , Regulación de la Expresión Génica , Inmunidad Innata , Masculino , Infecciones por Mycobacterium no Tuberculosas/inmunología , Interferencia de ARN , Catelicidinas
12.
Sci Rep ; 7(1): 3431, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611371

RESUMEN

The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster-Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.


Asunto(s)
Antibacterianos/farmacología , Autofagia , Infecciones por Mycobacterium/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Antibacterianos/uso terapéutico , Células Cultivadas , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Péptidos Cíclicos/uso terapéutico , Streptomyces/efectos de los fármacos , Streptomyces/patogenicidad
13.
Microbes Infect ; 19(1): 5-17, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27637463

RESUMEN

Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Familia de Multigenes , Mycobacterium/patogenicidad , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Citocinas/metabolismo , Femenino , Eliminación de Gen , Voluntarios Sanos , Humanos , Inmunidad Innata , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Mycobacterium/genética , Factores de Virulencia/genética
14.
Radiat Res ; 187(1): 32-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28001907

RESUMEN

During radiotherapy for tumors, the innate immune system also responds to ionizing radiation and induces immune modulation. However, little is known about the molecular mechanisms by which radiation modulates innate immune responses. In this study, we observed that radiation triggered the generation of mitochondrial reactive oxygen species (mROS), leading to innate immune responses in murine bone marrow-derived macrophages (BMDM). Radiation-induced mROS was essential for robust induction of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12p40 mRNA and protein in BMDM. Exposure to radiation also led to rapid activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways in BMDM. Notably, radiation-induced MAPK activation and NF-κB signaling were regulated by mROS in macrophages. Additionally, radiation-induced expression of TNF-α, IL-6 and IL-12p40 was dependent on JNK, p38 and NF-κB activation in BMDM. These data suggest a key role for radiation-induced pro-inflammatory responses and activation of the MAPK and NF-κB pathways through a triggering mechanism involving mROS generation.


Asunto(s)
Macrófagos/inmunología , Macrófagos/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Animales , Células de la Médula Ósea/citología , Activación Enzimática/efectos de la radiación , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Interleucina-1beta/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Endocrinol Metab (Seoul) ; 31(1): 17-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26754583

RESUMEN

The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues.

16.
Arch Pharm Res ; 39(11): 1491-1502, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27699647

RESUMEN

Innate immunity constitutes the first line of defense against pathogenic and dangerous insults. However, it is a double-edged sword, as it functions in both clearance of infection and inflammatory damage. It is therefore important that innate immune responses are tightly controlled to prevent harmful excessive inflammation. Nuclear receptors (NRs) are a family of transcription factors that play critical roles in various physiological responses. Orphan NRs are a subset of NRs for which the ligands and functions are unclear. Accumulating evidence has revealed that orphan NRs play essential roles in innate immune responses to prevent pathogenic inflammatory responses and to enhance antimicrobial host defenses. In this review, we describe current knowledge on the roles and mechanisms of orphan NRs in the regulation of innate immune responses. Discovery of new functions of orphan NRs would facilitate development of novel preventive and therapeutic strategies against human inflammatory diseases.


Asunto(s)
Inmunidad Innata/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Ligandos , Receptores Nucleares Huérfanos/química , Receptores Nucleares Huérfanos/genética , Procesamiento Proteico-Postraduccional , Transducción de Señal
17.
Nat Commun ; 6: 6115, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25655831

RESUMEN

Excessive activation of the NLRP3 inflammasome results in damaging inflammation, yet the regulators of this process remain poorly defined. Herein, we show that the orphan nuclear receptor small heterodimer partner (SHP) is a negative regulator of NLRP3 inflammasome activation. NLRP3 inflammasome activation leads to an interaction between SHP and NLRP3, proteins that are both recruited to mitochondria. Overexpression of SHP competitively inhibits binding of NLRP3 to apoptosis-associated speck-like protein containing a CARD (ASC). SHP deficiency results in increased secretion of proinflammatory cytokines IL-1ß and IL-18, and excessive pathologic responses typically observed in mouse models of kidney tubular necrosis and peritoneal gout. Notably, the loss of SHP results in accumulation of damaged mitochondria and a sustained interaction between NLRP3 and ASC in the endoplasmic reticulum. These data are suggestive of a role for SHP in controlling NLRP3 inflammasome activation through a mechanism involving interaction with NLRP3 and maintenance of mitochondrial homeostasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Células HEK293 , Homeostasis , Humanos , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Unión Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/deficiencia
18.
Autophagy ; 10(5): 785-802, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598403

RESUMEN

AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), ß (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Autofagia/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Factores de Transcripción/fisiología , Animales , Células Cultivadas , Drosophila melanogaster , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mycobacterium/inmunología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal/genética , Transducción de Señal/inmunología
19.
Cell Host Microbe ; 11(5): 457-68, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22607799

RESUMEN

The current standard of treatment against tuberculosis consists of a cocktail of first-line drugs, including isoniazid and pyrazinamide. Although these drugs are known to be bactericidal, contribution of host cell responses in the context of antimycobacterial chemotherapy, if any, remains unknown. We demonstrate that isoniazid and pyrazinamide promote autophagy activation and phagosomal maturation in Mycobacterium tuberculosis (Mtb)-infected host cells. Treatment of Mtb-infected macrophages with isoniazid or pyrazinamide caused significant activation of cellular and mitochondrial reactive oxygen species and autophagy, which was triggered by bacterial hydroxyl radical generation. Mycobacterium marinum-infected autophagy-defective, atg7 mutant Drosophila exhibited decreased survival rates, which could not be rescued by antimycobacterial treatment, indicating that autophagy is required for effective antimycobacterial drug action in vivo. Moreover, activation of autophagy by antibiotic treatment dampened Mtb-induced proinflammatory responses in macrophages. Together, these findings underscore the importance of host autophagy in orchestrating successful antimicrobial responses to mycobacteria during chemotherapy.


Asunto(s)
Antituberculosos/farmacología , Autofagia/inmunología , Mycobacterium marinum/inmunología , Mycobacterium tuberculosis/inmunología , Animales , Proteína 7 Relacionada con la Autofagia , Células Cultivadas , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/inmunología , Humanos , Isoniazida/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Pirazinamida/farmacología , Especies Reactivas de Oxígeno/metabolismo , Análisis de Supervivencia
20.
Cell Host Microbe ; 6(3): 231-43, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19748465

RESUMEN

Autophagy and vitamin D3-mediated innate immunity have been shown to confer protection against infection with intracellular Mycobacterium tuberculosis. Here, we show that these two antimycobacterial defenses are physiologically linked via a regulatory function of human cathelicidin (hCAP-18/LL-37), a member of the cathelicidin family of antimicrobial proteins. We show that 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, induced autophagy in human monocytes via cathelicidin, which activated transcription of the autophagy-related genes Beclin-1 and Atg5. 1,25D3 also induced the colocalization of mycobacterial phagosomes with autophagosomes in human macrophages in a cathelicidin-dependent manner. Furthermore, the antimycobacterial activity in human macrophages mediated by physiological levels of 1,25D3 required autophagy and cathelicidin. These results indicate that human cathelicidin, a protein that has direct antimicrobial activity, also serves as a mediator of vitamin D3-induced autophagy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Autofagia/efectos de los fármacos , Colecalciferol/farmacología , Macrófagos/citología , Monocitos/citología , Tuberculosis/fisiopatología , Péptidos Catiónicos Antimicrobianos/genética , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Monocitos/efectos de los fármacos , Monocitos/microbiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/microbiología , Catelicidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA