Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 138(4): 685-95, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703395

RESUMEN

The bacterial transposon Tn7 directs transposition into actively replicating DNA by a mechanism involving the transposon-encoded protein TnsE. Here we show that TnsE physically and functionally interacts with the processivity factor of the DNA replication machinery in vivo and in vitro. Our work establishes an in vitro TnsABC+E transposition reaction reconstituted from purified proteins and target DNA structures. Using the in vitro reaction we confirm that the processivity factor specifically reorders TnsE-mediated transposition events on target DNAs in a way that matches the bias with active DNA replication in vivo. The TnsE interaction with an essential and conserved component of the replication machinery, and a DNA structure reveals a mechanism by which Tn7, and probably other elements, selects target sites associated with DNA replication.


Asunto(s)
Replicación del ADN , Elementos Transponibles de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
2.
Molecules ; 24(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022852

RESUMEN

Determining chemokine receptor CXCR4 expression is significant in multiple diseases due to its role in promoting inflammation, cell migration and tumorigenesis. [68Ga]Pentixafor is a promising ligand for imaging CXCR4 expression in multiple tumor types, but its utility is limited by the physical properties of 68Ga. We screened a library of >200 fluorine-containing structural derivatives of AMD-3465 to identify promising candidates for in vivo imaging of CXCR4 expression by positron emission tomography (PET). Compounds containing fluoroethyltriazoles consistently achieved higher docking scores. Six of these higher scoring compounds were radiolabeled by click chemistry and evaluated in PC3-CXCR4 cells and BALB/c mice bearing bilateral PC3-WT and PC3-CXCR4 xenograft tumors. The apparent CXCR4 affinity of the ligands was relatively low, but tumor uptake was CXCR4-specific. The tumor uptake of [18F]RPS-534 (7.2 ± 0.3 %ID/g) and [18F]RPS-547 (3.1 ± 0.5 %ID/g) at 1 h p.i. was highest, leading to high tumor-to-blood, tumor-to-muscle, and tumor-to-lung ratios. Total cell-associated activity better predicted in vivo tumor uptake than did the docking score or apparent CXCR4 affinity. By this metric, and on the basis of their high yielding radiosynthesis, high tumor uptake, and good contrast to background, [18F]RPS-547, and especially [18F]RPS-534, are promising 18F-labeled candidates for imaging CXCR4 expression.


Asunto(s)
Complejos de Coordinación/administración & dosificación , Imagen Molecular , Péptidos Cíclicos/administración & dosificación , Radiofármacos/administración & dosificación , Receptores CXCR4/genética , Animales , Línea Celular Tumoral , Complejos de Coordinación/química , Radioisótopos de Flúor/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Ratones , Péptidos Cíclicos/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Receptores CXCR4/química , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Front Immunol ; 15: 1355388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550578

RESUMEN

Ionizing radiation has garnered considerable attention as a combination partner for immunotherapy due to its potential immunostimulatory effects. In contrast to the more commonly used external beam radiation, we explored the feasibility of combining chimeric antigen receptor (CAR) T cell therapy with targeted radionuclide therapy (TRT), which is achieved by delivering ß-emitting 177Lu-DOTATATE to tumor via tumor-infiltrating CAR T cells that express somatostatin receptor 2 (SSTR2). We hypothesized that the delivery of radiation to tumors could synergize with CAR T therapy, resulting in enhanced antitumor immunity and tumor response. To determine the optimal dosage and timing of 177Lu-DOTATATE treatment, we measured CAR T cell infiltration and expansion in tumors longitudinally through positron emission tomography (PET) using a SSTR2-specific positron-emitting radiotracer,18F-NOTA-Octreotide. In animals receiving CAR T cells and a low-dose (2.5 Gy) of TRT following the administration of 177Lu-DOTATATE, we observed a rapid regression of large subcutaneous tumors, which coincided with a dramatic increase in serum proinflammatory cytokines. Tumor burden was also reduced when a higher radiation dose (6 Gy) was delivered to the tumor. However, this higher dose led to cell death in both the tumor and CAR T cells. Our study suggests that there may exist an optimum range of TRT dosage that can enhance T cell activity and sensitize tumor cells to T cell killing, which may result in more durable tumor control compared to a higher radiation dose.


Asunto(s)
Neoplasias , Animales , Neoplasias/tratamiento farmacológico , Octreótido/uso terapéutico , Linfocitos T , Inmunoterapia , Radioisótopos/uso terapéutico
4.
Biophys J ; 105(4): 862-71, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23972838

RESUMEN

Femtosecond laser optoporation is a powerful technique to introduce membrane-impermeable molecules, such as DNA plasmids, into targeted cells in culture, yet only a narrow range of laser regimes have been explored. In addition, the dynamics of the laser-produced membrane pores and the effect of pore behavior on cell viability and transfection efficiency remain poorly elucidated. We studied optoporation in cultured cells using tightly focused femtosecond laser pulses in two irradiation regimes: millions of low-energy pulses and two higher-energy pulses. We quantified the pore radius and resealing time as a function of incident laser energy and determined cell viability and transfection efficiency for both irradiation regimes. These data showed that pore size was the governing factor in cell viability, independently of the laser irradiation regime. For viable cells, larger pores resealed more quickly than smaller pores, ruling out a passive resealing mechanism. Based on the pore size and resealing time, we predict that few DNA plasmids enter the cell via diffusion, suggesting an alternative mechanism for cell transfection. Indeed, we observed fluorescently labeled DNA plasmid adhering to the irradiated patch of the cell membrane, suggesting that plasmids may enter the cell by adhering to the membrane and then being translocated.


Asunto(s)
Técnicas Citológicas/métodos , Rayos Láser , Transfección/métodos , Animales , Células CHO , Membrana Celular/metabolismo , Supervivencia Celular , Colorantes/metabolismo , Cricetinae , Cricetulus , ADN/genética , ADN/metabolismo , Plásmidos/genética , Factores de Tiempo
5.
EMBO J ; 28(13): 1831-42, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19536138

RESUMEN

OCRL, whose mutations are responsible for Lowe syndrome and Dent disease, and INPP5B are two similar proteins comprising a central inositol 5-phosphatase domain followed by an ASH and a RhoGAP-like domain. Their divergent NH2-terminal portions remain uncharacterized. We show that the NH2-terminal region of OCRL, but not of INPP5B, binds clathrin heavy chain. OCRL, which in contrast to INPP5B visits late stage endocytic clathrin-coated pits, was earlier shown to contain another binding site for clathrin in its COOH-terminal region. NMR structure determination further reveals that despite their primary sequence dissimilarity, the NH2-terminal portions of both OCRL and INPP5B contain a PH domain. The novel clathrin-binding site in OCRL maps to an unusual clathrin-box motif located in a loop of the PH domain, whose mutations reduce recruitment efficiency of OCRL to coated pits. These findings suggest an evolutionary pressure for a specialized function of OCRL in bridging phosphoinositide metabolism to clathrin-dependent membrane trafficking.


Asunto(s)
Clatrina/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clatrina/química , Vesículas Cubiertas/metabolismo , Vesículas Cubiertas/ultraestructura , Endocitosis , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosfatidilinositoles/metabolismo , Fosfolípidos , Monoéster Fosfórico Hidrolasas/genética , Conformación Proteica , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia
6.
Biochem Biophys Res Commun ; 433(2): 243-8, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23500466

RESUMEN

P-TEFb complex, a heterodimer of the kinase CDK9 and Cyclin T, is a critical factor that stimulates the process of transcription elongation. Here, we explored a fast and large-scale screening method to induce a temperature-dependent conditional disruption of the CDK9/Cyclin T interaction and developed an assay to validate their mutant phenotypes in a biological context. First, we used the yeast two-hybrid system to screen Drosophila melanogaster Cyclin T mutants at a large scale for temperature or cold sensitive (TS or CS) CDK9 interaction phenotypes. The isolated P-TEFb TS mutants were then expressed in Drosophila cells and were investigated for their effects on Drosophila hsp70 transcriptional activity. Our results showed that these P-TEFb TS mutants had a reduced level of hsp70 transcription at restrictive temperatures. A model structure of the Cyclin T and CDK9 complex suggested that the key TS mutations were found within the α2- and α3-helices at the interface of the complex, which may disrupt the binding of Cyclin T to CDK9 directly or indirectly by affecting the conformation of Cyclin T. The yeast two-hybrid-based screening strategy described here for isolating TS or CS interaction phenotypes can be directly applicable to other complexes in higher organisms. The use of TS or CS mutants will enable a 'real-time and reversible perturbation' restricted to specific protein-protein interactions, providing a mechanistic insight into the biological process mediated by a target complex.


Asunto(s)
Proteínas de Drosophila/genética , Mutación , Factor B de Elongación Transcripcional Positiva/genética , Técnicas del Sistema de Dos Híbridos , Secuencia de Aminoácidos , Animales , Ciclina T/química , Ciclina T/genética , Quinasa 9 Dependiente de la Ciclina/química , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Modelos Moleculares , Datos de Secuencia Molecular , Factor B de Elongación Transcripcional Positiva/metabolismo , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína , Análisis de Secuencia de ADN , Temperatura , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 107(14): 6252-7, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308586

RESUMEN

A systematic approach to the discovery of conformation-specific antibodies or those that recognize activation-induced neoepitopes in signaling molecules and enzymes will be a powerful tool in developing antibodies for basic science and therapy. Here, we report the isolation of antibody antagonists that preferentially bind activated integrin Mac-1 (alpha(M)beta(2)) and are potent in blocking neutrophil adhesion and migration. A novel strategy was developed for this task, consisting of yeast surface display of Mac-1 inserted (I) domain library, directed evolution to isolate active mutants of the I domain, and screening of phage display of human antibody library against the active I domain in yeast. Enriched antibody library was then introduced into yeast surface two-hybrid system for final quantitative selection of antibodies from monomeric antigen-antibody interaction. This led to highly efficient isolation of intermediate to high affinity antibodies, which preferentially reacted with the active I domain, antagonized the I domain binding to intercellular adhesion molecule (ICAM)-1, complement C3 fragment iC3b, and fibronectin, and potently inhibited neutrophil migration on fibrinogen. The strategy demonstrated herein can be broadly applicable to developing antibodies against modular domains that switch between inactive and active conformations, particularly toward the discovery of antibody antagonists in therapeutic and diagnostic applications.


Asunto(s)
Especificidad de Anticuerpos , Epítopos/inmunología , Antígeno de Macrófago-1/inmunología , Biblioteca de Péptidos , Saccharomyces cerevisiae/inmunología , Adhesión Celular , Movimiento Celular , Humanos , Ligandos , Activación Neutrófila , Neutrófilos/citología , Neutrófilos/inmunología
8.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067255

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is frequently overexpressed in various carcinomas. We have developed chimeric antigen receptor (CAR) T cells specifically targeting EpCAM for the treatment of gastric cancer. This study sought to unravel the precise mechanisms by which tumors evade immune surveillance and develop resistance to CAR T cell therapy. Through a combination of whole-body CAR T cell imaging and single-cell multiomic analyses, we uncovered intricate interactions between tumors and tumor-infiltrating lymphocytes (TILs). In a gastric cancer model, tumor-infiltrating CD8 T cells exhibited both cytotoxic and exhausted phenotypes, while CD4 T cells were mainly regulatory T cells. A T cell receptor (TCR) clonal analysis provided evidence of CAR T cell proliferation and clonal expansion within resistant tumors, which was substantiated by whole-body CAR T cell imaging. Furthermore, single-cell transcriptomics showed that tumor cells in mice with refractory or relapsing outcomes were enriched for genes involved in major histocompatibility complex (MHC) and antigen presentation pathways, interferon-γ and interferon-α responses, mitochondrial activities, and a set of genes (e.g., CD74, IDO1, IFI27) linked to tumor progression and unfavorable disease prognoses. This research highlights an approach that combines imaging and multiomic methodologies to concurrently characterize the evolution of tumors and the differentiation of CAR T cells.

9.
Nat Commun ; 14(1): 2068, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045815

RESUMEN

The limited number of targetable tumor-specific antigens and the immunosuppressive nature of the microenvironment within solid malignancies represent major barriers to the success of chimeric antigen receptor (CAR)-T cell therapies. Here, using epithelial cell adhesion molecule (EpCAM) as a model antigen, we used alanine scanning of the complementarity-determining region to fine-tune CAR affinity. This allowed us to identify CARs that could spare primary epithelial cells while still effectively targeting EpCAMhigh tumors. Although affinity-tuned CARs showed suboptimal antitumor activity in vivo, we found that inducible secretion of interleukin-12 (IL-12), under the control of the NFAT promoter, can restore CAR activity to levels close to that of the parental CAR. This strategy was further validated with another affinity-tuned CAR specific for intercellular adhesion molecule-1 (ICAM-1). Only in affinity-tuned CAR-T cells was NFAT activity stringently controlled and restricted to tumors expressing the antigen of interest at high levels. Our study demonstrates the feasibility of specifically gearing CAR-T cells towards recognition of solid tumors by combining inducible IL-12 expression and affinity-tuned CAR.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Interleucina-12/genética , Molécula de Adhesión Celular Epitelial , Inmunoterapia Adoptiva , Neoplasias/genética , Neoplasias/terapia , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Microambiente Tumoral
10.
Mol Cancer Res ; 21(5): 397-410, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790391

RESUMEN

A subset of thyroid cancers, recurrent differentiated thyroid cancers and anaplastic thyroid cancer (ATC), are difficult to treat by thyroidectomy and systemic therapy. A common mutation in thyroid cancer, BRAFV600E, has targetable treatment options; however, the results have been disappointing in thyroid cancers compared with BRAFV600E melanoma, as thyroid cancers quickly become resistant to BRAFV600E inhibitor (BRAFi). Here, we studied the molecular pathway that is induced in BRAFV600E thyroid cancer cells and patient-derived tumor samples in response to BRAFi, vemurafenib, using RNA-sequencing and molecular analysis. Both inducible response to BRAFi and acquired BRAFi resistance in BRAFV600E thyroid cancer cells showed significant activation of the JAK/STAT pathway. Functional analyses revealed that the combination of BRAFi and inhibitors of JAK/STAT pathway controlled BRAFV600E thyroid cancer cell growth. The Cancer Genome Atlas data analysis demonstrated that potent activation of the JAK/STAT signaling was associated with shorter recurrence rate in patients with differentiated thyroid cancer. Analysis of tumor RNA expression in patients with poorly differentiated thyroid cancer and ATC also support that enhanced activity of JAK/STAT signaling pathway is correlated with worse prognosis. Our study demonstrates that JAK/STAT pathway is activated as BRAFV600E thyroid cancer cells develop resistance to BRAFi and that this pathway is a potential target for anticancer activity and to overcome drug resistance that commonly develops to treatment with BRAFi in thyroid cancer. IMPLICATIONS: Dual inhibition of BRAF and JAK/STAT signaling pathway is a potential therapeutic treatment for anticancer activity and to overcome drug resistance to BRAFi in thyroid cancer.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Quinasas Janus/uso terapéutico , Sulfonamidas/farmacología , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/patología , Mutación , ARN , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral
11.
J Am Chem Soc ; 134(36): 14642-5, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22888993

RESUMEN

Helix-helix interactions are fundamental to many biological signals and systems and are found in homo- or heteromultimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six-helix bundles (6HBs) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Using a yeast surface two-hybrid (YS2H) system, a platform designed to detect protein-protein interactions occurring through a secretory pathway, we reconstituted 6HB complexes on the yeast surface, quantitatively measured the equilibrium and kinetic constants of soluble 6HB, and delineated the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for the facile characterization and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , Saccharomyces cerevisiae/química , Técnicas del Sistema de Dos Híbridos , VIH/efectos de los fármacos , Cinética , Péptidos/química , Péptidos/farmacología , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/virología
12.
Sci Rep ; 12(1): 20932, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463361

RESUMEN

The ability to image adoptively transferred T cells in the body and to eliminate them to avoid toxicity will be vital for chimeric antigen receptor (CAR) T cell therapy, particularly against solid tumors with higher risk of off-tumor toxicity. Previously, we have demonstrated the utility of somatostatin receptor 2 (SSTR2) for CAR T cell imaging, illustrating the expansion and contraction of CAR T cells in tumor as well as off-tumor expansion. Using intercellular adhesion molecule 1 (ICAM-1)-specific CAR T cells that secrete interleukin (IL)-12 as a model, herein we examined the potential of SSTR2 as a safety switch when combined with the SSTR2-specific maytansine-octreotate conjugate PEN-221. Constitutive secretion of IL-12 led to continuous expansion of CAR T cells after rapid elimination of tumors, causing systemic toxicity in mice with intact MHC expression. Treatment with PEN-221 rapidly reduced the abundance of CAR T cells, decreasing the severity of xenogeneic graft-versus-host disease (GvHD), and prolonged survival. Our study supports the development of SSTR2 as a single genetic marker for CAR T cells that is readily applicable to humans both for anatomical detection of T cell distribution and an image-guided safety switch for rapid elimination of CAR T cells.


Asunto(s)
Inmunotoxinas , Linfocitos T , Humanos , Animales , Ratones , Biomarcadores , Monitoreo Fisiológico , Diagnóstico por Imagen , Interleucina-12/genética
13.
J Biol Chem ; 285(21): 15906-15, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20304924

RESUMEN

The immunoglobulin (Ig) superfamily is one of the largest families in the vertebrate genome, found most frequently in cell surface molecules. Intercellular adhesion molecule-1 (ICAM-1) contains five extracellular Ig superfamily domains (D1-D5) of which the first domain, D1, is the binding site for the integrin lymphocyte function-associated antigen-1 (LFA-1) and human rhinovirus. Despite the modular nature of many Ig superfamily domains with respect to domain folding and ligand recognition, D1 does not fold on its own due to the loss of its interaction with the second domain. The goal of this study was to engineer ICAM-1 D1 by introducing mutations that would stabilize the Ig superfamily domain fold while retaining its ability to bind to LFA-1 and rhinovirus. First, with a directed evolution approach, we isolated mutations in D1 that showed binding to conformation-specific antibodies and the ligand binding domain of LFA-1 called the inserted, or I, domain. Then, with a rational design approach we introduced mutations that contributed to the stability of ICAM-1 D1 in solution. The mutations that restored native folding of D1 in isolation were those that would convert hydrogen bond networks in buried regions into hydrophobic contacts. Notably, for most mutations, identical or similar types of substitutions were found in ICAM-1 molecules of different species and other ICAM family members. The systematic approach demonstrated in this study to engineer a single Ig superfamily fold in ICAM-1 can be broadly applicable to the engineering of modular Ig superfamily domains in other cell surface molecules.


Asunto(s)
Evolución Molecular Dirigida , Molécula 1 de Adhesión Intercelular/química , Ingeniería de Proteínas , Pliegue de Proteína , Animales , Células COS , Chlorocebus aethiops , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae
14.
ACS Synth Biol ; 10(11): 2938-2946, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34724381

RESUMEN

The enzymes immobilized through yeast surface display (YSD) can be used in in vitro metabolic pathway reconstruction as alternatives to the enzymes isolated or purified through conventional biochemistry methods. They can be easily prepared by growing and collecting yeast cells harboring display constructs. This may provide an economical method for enriching certain enzymes for biochemistry characterization and application. Herein, we took the advantage of one-pot cascade reactions catalyzed by YSD-immobilized enzymes in the mevalonate pathway to produce geraniol in vitro. YSD-immobilized enzymes of 10 cascade reactions for geraniol production, together with optimization of catalytic components, cofactor regeneration, and byproduct removal, achieved a final yield of 7.55 mg L-1 after seven cycles. This study demonstrated that it is feasible to reconstitute a complex multi-enzymatic system for the chemical biosynthesis in vitro by exploiting YSD-immobilized cascade enzymes.


Asunto(s)
Vías Biosintéticas/fisiología , Saccharomyces cerevisiae/metabolismo , Monoterpenos Acíclicos/metabolismo , Catálisis , Enzimas Inmovilizadas/metabolismo , Redes y Vías Metabólicas/fisiología , Ácido Mevalónico/metabolismo , Complejos Multienzimáticos/metabolismo
15.
Cancer Immunol Res ; 9(10): 1158-1174, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341066

RESUMEN

Adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated unparalleled responses in hematologic cancers, yet antigen escape and tumor relapse occur frequently. CAR T-cell therapy for patients with solid tumors faces even greater challenges due to the immunosuppressive tumor environment and antigen heterogeneity. Here, we developed a bispecific CAR to simultaneously target epithelial cell adhesion molecule (EpCAM) and intercellular adhesion molecule 1 (ICAM-1) to overcome antigen escape and to improve the durability of tumor responses. ICAM-1 is an adhesion molecule inducible by inflammatory cytokines and elevated in many types of tumors. Our study demonstrates superior efficacy of bispecific CAR T cells compared with CAR T cells targeting a single primary antigen. Bispecific CAR T achieved more durable antitumor responses in tumor models with either homogenous or heterogenous expression of EpCAM. We also showed that the activation of CAR T cells against EpCAM in tumors led to upregulation of ICAM-1, which rendered tumors more susceptible to ICAM-1 targeting by bispecific CAR T cells. Our strategy of additional targeting of ICAM-1 may have broad applications in augmenting the activity of CAR T cells against primary tumor antigens that are prone to antigen loss or downregulation.


Asunto(s)
Molécula de Adhesión Celular Epitelial/metabolismo , Inmunoterapia Adoptiva/métodos , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Animales , Deriva y Cambio Antigénico , Sistemas CRISPR-Cas , Línea Celular Tumoral , Citotoxicidad Inmunológica , Molécula de Adhesión Celular Epitelial/genética , Humanos , Inmunoterapia Adoptiva/efectos adversos , Molécula 1 de Adhesión Intercelular/genética , Masculino , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Thyroid ; 31(10): 1481-1493, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34078123

RESUMEN

Background: Anaplastic thyroid cancer (ATC) is a rare cancer with poor prognosis and few treatment options. The objective of this study was to investigate new immune-associated therapeutic targets by identifying ATC-derived, human leukocyte antigen (HLA) class II-presenting peptides. One protein that generated multiple peptides in ATC was chondroitin sulfate-proteoglycan-4 (CSPG4), a transmembrane proteoglycan with increased expression in multiple aggressive cancers, but not yet investigated in ATC. Methods: We applied autologous peripheral blood T cells to ATC patient-derived xenografted mice to examine whether ATC induces a tumor-specific T cell response. We then identified peptide antigens eluted from the HLA-DQ complex in ATC patient-derived cells using mass spectrometry, detecting abundant CSPG4-derived peptides specific to the ATC sample. Next, we analyzed the surface expression level of CSPG4 in thyroid cancer cell lines and primary cell culture using flow cytometry. In addition, we used immunohistochemistry to compare the expression level and localization of the CSPG4 protein in ATC, papillary thyroid cancer, and normal thyroid tissue. We then investigated the correlation between CSPG4 expression and clinicopathological features of patients with thyroid cancer. Results: We found that ATC tissue had a high level of HLA-DQ expression and that the patient's CD4+ T cells showed activation when exposed to ATC. By eluting the HLA-DQ complex of ATC tissue, we found that CSPG4 generated one of the most abundant and specific peptides. CSPG4 expression at the cell surface of thyroid cancer was also significantly high when determined by flow cytometry, with the majority of ATC cell lines exhibiting ∼10-fold higher mean fluorescence intensity. Furthermore, most ATC patient cases expressed CSPG4 in the cytoplasm or membrane of the tumor cells. CSPG4 expression was correlated with tumor size, extrathyroidal extension, and intercellular adhesion molecule-1 (ICAM-1) circumferential expression. CSPG4 mRNA overexpression was associated with worse overall survival in patients with ATC and poorly differentiated thyroid cancer. Conclusions: CSPG4 expression is significantly elevated in aggressive thyroid cancers, with a strong correlation with a poor prognosis. The vast number of HLA-DQ eluted CSPG4 peptides was identified in ATC, demonstrating the potential of CSPG4 as a novel immunotherapeutic target for ATC.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regulación Neoplásica de la Expresión Génica , Expresión Génica , Inmunoterapia/métodos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Terapia Molecular Dirigida , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/terapia , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/terapia , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/metabolismo , Humanos , Ratones , Ratones Transgénicos , Pronóstico , Carcinoma Anaplásico de Tiroides/inmunología , Neoplasias de la Tiroides/inmunología
17.
Sci Rep ; 10(1): 1171, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980695

RESUMEN

The use of magnetic fluid hyperthermia (MFH) for cancer therapy has shown promise but lacks suitable methods for quantifying exogenous irons such as superparamagnetic iron oxide (SPIO) nanoparticles as a source of heat generation under an alternating magnetic field (AMF). Application of quantitative susceptibility mapping (QSM) technique to prediction of SPIO in preclinical models has been challenging due to a large variation of susceptibility values, chemical shift from tissue fat, and noisier data arising from the higher resolution required to visualize the anatomy of small animals. In this study, we developed a robust QSM for the SPIO ferumoxytol in live mice to examine its potential application in MFH for cancer therapy. We demonstrated that QSM was able to simultaneously detect high level ferumoxytol accumulation in the liver and low level localization near the periphery of tumors. Detection of ferumoxytol distribution in the body by QSM, however, required imaging prior to and post ferumoxytol injection to discriminate exogenous iron susceptibility from other endogenous sources. Intratumoral injection of ferumoxytol combined with AMF produced a ferumoxytol-dose dependent tumor killing. Histology of tumor sections corroborated QSM visualization of ferumoxytol distribution near the tumor periphery, and confirmed the spatial correlation of cell death with ferumoxytol distribution. Due to the dissipation of SPIOs from the injection site, quantitative mapping of SPIO distribution will aid in estimating a change in temperature in tissues, thereby maximizing MFH effects on tumors and minimizing side-effects by avoiding unwanted tissue heating.


Asunto(s)
Compuestos Férricos/análisis , Óxido Ferrosoférrico/análisis , Hipertermia Inducida , Nanopartículas/análisis , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Adenocarcinoma/terapia , Animales , Línea Celular Tumoral , Medios de Contraste , Compuestos Férricos/farmacocinética , Compuestos Férricos/uso terapéutico , Óxido Ferrosoférrico/farmacocinética , Óxido Ferrosoférrico/uso terapéutico , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos NOD , Nanopartículas/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Radioisótopos , Radiofármacos , Tejido Subcutáneo , Distribución Tisular , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio
18.
Mol Ther Oncolytics ; 18: 587-601, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32995483

RESUMEN

Cancer therapy utilizing adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated remarkable clinical outcomes in hematologic malignancies. However, CAR T cell application to solid tumors has had limited success, partly due to the lack of tumor-specific antigens and an immune-suppressive tumor microenvironment. From the tumor tissues of gastric cancer patients, we found that intercellular adhesion molecule 1 (ICAM-1) expression is significantly associated with advanced stage and shorter survival. In this study, we report a proof-of-concept study using ICAM-1-targeting CAR T cells against gastric cancer. The efficacy of ICAM-1 CAR T cells showed a significant correlation with the level of ICAM-1 expression in target cells in vitro. In animal models of human gastric cancer, ICAM-1-targeting CAR T cells potently eliminated tumors that developed in the lungs, while their efficacy was more limited against the tumors in the peritoneum. To augment CAR T cell activity against intraperitoneal tumors, combinations with paclitaxel or CAR activation-dependent interleukin (IL)-12 release were explored and found to significantly increase anti-tumor activity and survival benefit. Collectively, ICAM-1-targeting CAR T cells alone or in combination with chemotherapy represent a promising strategy to treat patients with ICAM-1+ advanced gastric cancer.

20.
Clin Cancer Res ; 26(22): 6003-6016, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32887724

RESUMEN

PURPOSE: Advanced thyroid cancers, including poorly differentiated and anaplastic thyroid cancer (ATC), are lethal malignancies with limited treatment options. The majority of patients with ATC have responded poorly to programmed death 1 (PD1) blockade in early clinical trials. There is a need to explore new treatment options. EXPERIMENTAL DESIGN: We examined the expression of PD-L1 (a ligand of PD1) and intercellular adhesion molecule 1 (ICAM1) in thyroid tumors and ATC cell lines, and investigated the PD1 expression level in peripheral T cells of patients with thyroid cancer. Next, we studied the tumor-targeting efficacy and T-cell dynamics of monotherapy and combination treatments of ICAM1-targeting chimeric antigen receptor (CAR) T cells and anti-PD1 antibody in a xenograft model of ATC. RESULTS: Advanced thyroid cancers were associated with increased expression of both ICAM1 and PD-L1 in tumors, and elevated PD1 expression in CD8+ T cells of circulating blood. The expression of ICAM1 and PD-L1 in ATC lines was regulated by the IFNγ-JAK2 signaling pathway. ICAM1-targeted CAR T cells, produced from either healthy donor or patient T cells, in combination with PD1 blockade demonstrated an improved ability to eradicate ICAM1-expressing target tumor cells compared with CAR T treatment alone. PD1 blockade facilitated clearance of PD-L1 high tumor colonies and curtailed excessive CAR T expansion, resulting in rapid tumor clearance and prolonged survival in a mouse model. CONCLUSIONS: Targeting two IFNγ-inducible, tumor-associated antigens-ICAM1 and PD-L1-in a complementary manner might be an effective treatment strategy to control advanced thyroid cancers in vivo.


Asunto(s)
Antígeno B7-H1/genética , Molécula 1 de Adhesión Intercelular/genética , Receptor de Muerte Celular Programada 1/genética , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Interferón gamma/genética , Janus Quinasa 2/genética , Ratones , Estadificación de Neoplasias , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/inmunología , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA