Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 33(5): 750-762, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37308294

RESUMEN

For most biological and medical applications of single-cell transcriptomics, an integrative study of multiple heterogeneous single-cell RNA sequencing (scRNA-seq) data sets is crucial. However, present approaches are unable to integrate diverse data sets from various biological conditions effectively because of the confounding effects of biological and technical differences. We introduce single-cell integration (scInt), an integration method based on accurate, robust cell-cell similarity construction and unified contrastive biological variation learning from multiple scRNA-seq data sets. scInt provides a flexible and effective approach to transfer knowledge from the already integrated reference to the query. We show that scInt outperforms 10 other cutting-edge approaches using both simulated and real data sets, particularly in the case of complex experimental designs. Application of scInt to mouse developing tracheal epithelial data shows its ability to integrate development trajectories from different developmental stages. Furthermore, scInt successfully identifies functionally distinct condition-specific cell subpopulations in single-cell heterogeneous samples from a variety of biological conditions.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación del Exoma , Análisis de Secuencia de ARN/métodos
2.
J Virol ; 96(18): e0073922, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36094314

RESUMEN

Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. IMPORTANCE EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Plásmidos , Latencia del Virus , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , MicroARNs/metabolismo , Neoplasias/virología , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Virales/genética , Latencia del Virus/genética
3.
PLoS Comput Biol ; 18(1): e1009770, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34986151

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1009118.].

4.
Mol Cancer ; 21(1): 74, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279145

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a process linked to metastasis and drug resistance with non-coding RNAs (ncRNAs) playing pivotal roles. We previously showed that miR-100 and miR-125b, embedded within the third intron of the ncRNA host gene MIR100HG, confer resistance to cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in colorectal cancer (CRC). However, whether the MIR100HG transcript itself has a role in cetuximab resistance or EMT is unknown. METHODS: The correlation between MIR100HG and EMT was analyzed by curating public CRC data repositories. The biological roles of MIR100HG in EMT, metastasis and cetuximab resistance in CRC were determined both in vitro and in vivo. The expression patterns of MIR100HG, hnRNPA2B1 and TCF7L2 in CRC specimens from patients who progressed on cetuximab and patients with metastatic disease were analyzed by RNAscope and immunohistochemical staining. RESULTS: The expression of MIR100HG was strongly correlated with EMT markers and acted as a positive regulator of EMT. MIR100HG sustained cetuximab resistance and facilitated invasion and metastasis in CRC cells both in vitro and in vivo. hnRNPA2B1 was identified as a binding partner of MIR100HG. Mechanistically, MIR100HG maintained mRNA stability of TCF7L2, a major transcriptional coactivator of the Wnt/ß-catenin signaling, by interacting with hnRNPA2B1. hnRNPA2B1 recognized the N6-methyladenosine (m6A) site of TCF7L2 mRNA in the presence of MIR100HG. TCF7L2, in turn, activated MIR100HG transcription, forming a feed forward regulatory loop. The MIR100HG/hnRNPA2B1/TCF7L2 axis was augmented in specimens from CRC patients who either developed local or distant metastasis or had disease progression that was associated with cetuximab resistance. CONCLUSIONS: MIR100HG and hnRNPA2B1 interact to control the transcriptional activity of Wnt signaling in CRC via regulation of TCF7L2 mRNA stability. Our findings identified MIR100HG as a potent EMT inducer in CRC that may contribute to cetuximab resistance and metastasis by activation of a MIR100HG/hnRNPA2B1/TCF7L2 feedback loop.


Asunto(s)
Neoplasias Colorrectales , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , MicroARNs , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Cetuximab/genética , Cetuximab/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Vía de Señalización Wnt/genética
5.
PLoS Comput Biol ; 17(6): e1009118, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138847

RESUMEN

The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.


Asunto(s)
RNA-Seq/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Programas Informáticos , Animales , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Interpretación Estadística de Datos , Visualización de Datos , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Técnicas Genéticas/estadística & datos numéricos , Humanos , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación
6.
Genomics ; 113(2): 456-462, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33383142

RESUMEN

T-cell receptor (TCR) is crucial in T cell-mediated virus clearance. To date, TCR bias has been observed in various diseases. However, studies on the TCR repertoire of COVID-19 patients are lacking. Here, we used single-cell V(D)J sequencing to conduct comparative analyses of TCR repertoire between 12 COVID-19 patients and 6 healthy controls, as well as other virus-infected samples. We observed distinct T cell clonal expansion in COVID-19. Further analysis of VJ gene combination revealed 6 VJ pairs significantly increased, while 139 pairs significantly decreased in COVID-19 patients. When considering the VJ combination of α and ß chains at the same time, the combination with the highest frequency on COVID-19 was TRAV12-2-J27-TRBV7-9-J2-3. Besides, preferential usage of V and J gene segments was also observed in samples infected by different viruses. Our study provides novel insights on TCR in COVID-19, which contribute to our understanding of the immune response induced by SARS-CoV-2.


Asunto(s)
COVID-19/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Receptores de Antígenos de Linfocitos T/genética , SARS-CoV-2 , Análisis de la Célula Individual , COVID-19/inmunología , Femenino , Humanos , Masculino , Linfocitos T/inmunología
7.
BMC Bioinformatics ; 21(Suppl 16): 540, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33323107

RESUMEN

BACKGROUND: Single-cell RNA sequencing can be used to fairly determine cell types, which is beneficial to the medical field, especially the many recent studies on COVID-19. Generally, single-cell RNA data analysis pipelines include data normalization, size reduction, and unsupervised clustering. However, different normalization and size reduction methods will significantly affect the results of clustering and cell type enrichment analysis. Choices of preprocessing paths is crucial in scRNA-Seq data mining, because a proper preprocessing path can extract more important information from complex raw data and lead to more accurate clustering results. RESULTS: We proposed a method called NDRindex (Normalization and Dimensionality Reduction index) to evaluate data quality of outcomes of normalization and dimensionality reduction methods. The method includes a function to calculate the degree of data aggregation, which is the key to measuring data quality before clustering. For the five single-cell RNA sequence datasets we tested, the results proved the efficacy and accuracy of our index. CONCLUSIONS: This method we introduce focuses on filling the blanks in the selection of preprocessing paths, and the result proves its effectiveness and accuracy. Our research provides useful indicators for the evaluation of RNA-Seq data.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos/clasificación , Bases de Datos de Ácidos Nucleicos/normas , RNA-Seq/métodos , COVID-19/virología , Análisis por Conglomerados , Humanos , SARS-CoV-2/genética
8.
BMC Genomics ; 21(1): 149, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046631

RESUMEN

BACKGROUND: With the rapid development of high-throughput sequencing technologies, many datasets on the same biological subject are generated. A meta-analysis is an approach that combines results from different studies on the same topic. The random-effects model in a meta-analysis enables the modeling of differences between studies by incorporating the between-study variance. RESULTS: This paper proposes a moments estimator of the between-study variance that represents the across-study variation. A new random-effects method (DSLD2), which involves two-step estimation starting with the DSL estimate and the [Formula: see text] in the second step, is presented. The DSLD2 method is compared with 6 other meta-analysis methods based on effect sizes across 8 aspects under three hypothesis settings. The results show that DSLD2 is a suitable method for identifying differentially expressed genes under the first hypothesis. The DSLD2 method is also applied to Alzheimer's microarray datasets. The differentially expressed genes detected by the DSLD2 method are significantly enriched in neurological diseases. CONCLUSIONS: The results from both simulationes and an application show that DSLD2 is a suitable method for detecting differentially expressed genes under the first hypothesis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Enfermedad de Alzheimer/genética , Interpretación Estadística de Datos , Humanos , Funciones de Verosimilitud , Metaanálisis como Asunto , Modelos Estadísticos , Método de Montecarlo , Curva ROC
9.
BMC Bioinformatics ; 20(Suppl 18): 573, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31760933

RESUMEN

BACKGROUND: During procedures for conducting multiple sequence alignment, that is so essential to use the substitution score of pairwise alignment. To compute adaptive scores for alignment, researchers usually use Hidden Markov Model or probabilistic consistency methods such as partition function. Recent studies show that optimizing the parameters for hidden Markov model, as well as integrating hidden Markov model with partition function can raise the accuracy of alignment. The combination of partition function and optimized HMM, which could further improve the alignment's accuracy, however, was ignored by these researches. RESULTS: A novel algorithm for MSA called ProbPFP is presented in this paper. It intergrate optimized HMM by particle swarm with partition function. The algorithm of PSO was applied to optimize HMM's parameters. After that, the posterior probability obtained by the HMM was combined with the one obtained by partition function, and thus to calculate an integrated substitution score for alignment. In order to evaluate the effectiveness of ProbPFP, we compared it with 13 outstanding or classic MSA methods. The results demonstrate that the alignments obtained by ProbPFP got the maximum mean TC scores and mean SP scores on these two benchmark datasets: SABmark and OXBench, and it got the second highest mean TC scores and mean SP scores on the benchmark dataset BAliBASE. ProbPFP is also compared with 4 other outstanding methods, by reconstructing the phylogenetic trees for six protein families extracted from the database TreeFam, based on the alignments obtained by these 5 methods. The result indicates that the reference trees are closer to the phylogenetic trees reconstructed from the alignments obtained by ProbPFP than the other methods. CONCLUSIONS: We propose a new multiple sequence alignment method combining optimized HMM and partition function in this paper. The performance validates this method could make a great improvement of the alignment's accuracy.


Asunto(s)
Biología Computacional/métodos , Proteínas/genética , Alineación de Secuencia/métodos , Algoritmos , Animales , Humanos , Cadenas de Markov , Familia de Multigenes , Filogenia , Proteínas/química , Programas Informáticos
10.
BMC Bioinformatics ; 20(Suppl 25): 691, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874619

RESUMEN

BACKGROUND: The association between BIN1 rs744373 variant and Alzheimer's disease (AD) had been identified by genome-wide association studies (GWASs) as well as candidate gene studies in Caucasian populations. But in East Asian populations, both positive and negative results had been identified by association studies. Considering the smaller sample sizes of the studies in East Asian, we believe that the results did not have enough statistical power. RESULTS: We conducted a meta-analysis with 71,168 samples (22,395 AD cases and 48,773 controls, from 37 studies of 19 articles). Based on the additive model, we observed significant genetic heterogeneities in pooled populations as well as Caucasians and East Asians. We identified a significant association between rs744373 polymorphism with AD in pooled populations (P = 5 × 10- 07, odds ratio (OR) = 1.12, and 95% confidence interval (CI) 1.07-1.17) and in Caucasian populations (P = 3.38 × 10- 08, OR = 1.16, 95% CI 1.10-1.22). But in the East Asian populations, the association was not identified (P = 0.393, OR = 1.057, and 95% CI 0.95-1.15). Besides, the regression analysis suggested no significant publication bias. The results for sensitivity analysis as well as meta-analysis under the dominant model and recessive model remained consistent, which demonstrated the reliability of our finding. CONCLUSIONS: The large-scale meta-analysis highlighted the significant association between rs744373 polymorphism and AD risk in Caucasian populations but not in the East Asian populations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Pueblo Asiatico/genética , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo Genético , Reproducibilidad de los Resultados , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA