Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lab Invest ; 94(12): 1312-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25365203

RESUMEN

Cigarette smoking enhances oxidative stress and airway inflammation in asthma, the mechanisms of which are largely unknown. Myeloid-derived regulatory cells (MDRC) are free radical producing immature myeloid cells with immunoregulatory properties that have recently been demonstrated as critical regulators of allergic airway inflammation. NO (nitric oxide)-producing immunosuppressive MDRC suppress T-cell proliferation and airway-hyper responsiveness (AHR), while the O2(•-) (superoxide)-producing MDRC are proinflammatory. We hypothesized that cigarette smoke (CS) exposure may impact MDRC function and contribute to exacerbations in asthma. Exposure of bone marrow (BM)-derived NO-producing MDRC to CS reduced the production of NO and its metabolites and inhibited their potential to suppress T-cell proliferation. Production of immunoregulatory cytokine IL-10 was significantly inhibited, while proinflammatory cytokines IL-6, IL-1ß, TNF-α and IL-33 were enhanced in CS-exposed BM-MDRC. Additionally, CS exposure increased NF-κB activation and induced BM-MDRC-mediated production of O2(•-), via NF-κB-dependent pathway. Intratracheal transfer of smoke-exposed MDRC-producing proinflammatory cytokines increased NF-κB activation, reactive oxygen species and mucin production in vivo and exacerbated AHR in C57BL/6 mice, mice deficient in Type I IFNR and MyD88, both with reduced numbers of endogenous MDRC. Thus CS exposure modulates MDRC function and contributes to asthma exacerbation and identifies MDRC as potential targets for asthma therapy.


Asunto(s)
Hiperreactividad Bronquial/etiología , Células Mieloides/fisiología , Nicotiana/efectos adversos , Humo/efectos adversos , Traslado Adoptivo , Animales , Células de la Médula Ósea/fisiología , Células Cultivadas , Interleucina-33 , Interleucinas/biosíntesis , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Óxido Nítrico/biosíntesis , Especies Reactivas de Oxígeno/metabolismo
2.
J Clin Invest ; 123(3): 1096-108, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23434591

RESUMEN

Matrix stiffening and myofibroblast resistance to apoptosis are cardinal features of chronic fibrotic diseases involving diverse organ systems. The interactions between altered tissue biomechanics and cellular signaling that sustain progressive fibrosis are not well defined. In this study, we used ex vivo and in vivo approaches to define a mechanotransduction pathway involving Rho/Rho kinase (Rho/ROCK), actin cytoskeletal remodeling, and a mechanosensitive transcription factor, megakaryoblastic leukemia 1 (MKL1), that coordinately regulate myofibroblast differentiation and survival. Both in an experimental mouse model of lung fibrosis and in human subjects with idiopathic pulmonary fibrosis (IPF), we observed activation of the Rho/ROCK pathway, enhanced actin cytoskeletal polymerization, and MKL1 cytoplasmic-nuclear shuttling. Pharmacologic disruption of this mechanotransduction pathway with the ROCK inhibitor fasudil induced myofibroblast apoptosis through a mechanism involving downregulation of BCL-2 and activation of the intrinsic mitochondrial apoptotic pathway. Treatment with fasudil during the postinflammatory fibrotic phase of lung injury or genetic ablation of Mkl1 protected mice from experimental lung fibrosis. These studies indicate that targeting mechanosensitive signaling in myofibroblasts to trigger the intrinsic apoptosis pathway may be an effective approach for treatment of fibrotic disorders.


Asunto(s)
Mecanotransducción Celular , Miofibroblastos/fisiología , Fibrosis Pulmonar/patología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Citoesqueleto de Actina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Transactivadores , Factor de Crecimiento Transformador beta1/fisiología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
3.
Cancer Res ; 73(22): 6609-20, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085788

RESUMEN

Chemoresistance due to heterogeneity of the tumor microenvironment (TME) hampers the long-term efficacy of first-line therapies for lung cancer. Current combination therapies for lung cancer provide only modest improvement in survival, implicating necessity for novel approaches that suppress malignant growth and stimulate long-term antitumor immunity. Oxidative stress in the TME promotes immunosuppression by tumor-infiltrating myeloid-derived suppressor cells (MDSC), which inhibit host protective antitumor immunity. Using a murine model of lung cancer, we demonstrate that a combination treatment with gemcitabine and a superoxide dismutase mimetic targets immunosuppressive MDSC in the TME and enhances the quantity and quality of both effector and memory CD8(+) T-cell responses. At the effector cell function level, the unique combination therapy targeting MDSC and redox signaling greatly enhanced cytolytic CD8(+) T-cell response and further decreased regulatory T cell infiltration. For long-term antitumor effects, this therapy altered the metabolism of memory cells with self-renewing phenotype and provided a preferential advantage for survival of memory subsets with long-term efficacy and persistence. Adoptive transfer of memory cells from this combination therapy prolonged survival of tumor-bearing recipients. Furthermore, the adoptively transferred memory cells responded to tumor rechallenge exerting long-term persistence. This approach offers a new paradigm to inhibit immunosuppression by direct targeting of MDSC function, to generate effector and persistent memory cells for tumor eradication, and to prevent lung cancer relapse.


Asunto(s)
Carcinoma Pulmonar de Lewis/inmunología , Tolerancia Inmunológica/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células Mieloides/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/terapia , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Femenino , Inmunosupresores/uso terapéutico , Inmunoterapia Adoptiva , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Microambiente Tumoral/inmunología , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA