RESUMEN
BACKGROUND: Wheat bran (WB) is a byproduct of refined wheat flour production with poor edible taste and low economic value. Herein, the WB was micronized via airflow superfine pulverization (ASP), and the effects of the ASP conditions on its particle size, nutritive compositions, whiteness, hydration characteristics, moisture distribution, microstructure, cation exchange capacity, volatile flavor components, and other characteristics were investigated. RESULTS: Reducing the rotational speed of the ASP screw and increasing the number of pulverizations significantly decreased the median particle size Dx(50) of WB to a minimum of 12.97 ± 0.19 µm (P < 0.05), increased the soluble dietary fiber content from 55.05 ± 2.94 to 106.86 ± 1.60 mg g-1, and improved the whiteness and water solubility index. In addition, the water holding capacity and oil holding capacity were significantly reduced (P < 0.05), while the cation exchange and swelling capacities first increased and then decreased. Up to about 70% of water in WB exists as bound water. As the Dx(50) of WB decreased, the content of bound and immobile water increased, while the free water decreased from 14.37 ± 1.21% to 7.59 ± 1.03%. Furthermore, WB was micronized and the particles became smaller and more evenly distributed. Using gas chromatography-ion mobility spectrometry, a total of 37 volatile compounds in micronized WB (including 10 aldehydes, 9 esters, 7 alcohols, and several acids, furans, ethers, aldehydes, esters, and alcohols) were identified as the main volatile compounds of WB. CONCLUSION: Collectively, ASP improved the physicochemical properties of WB. This study provides theoretical references for the use of ASP to improve the utilization and edibility of WB. © 2024 Society of Chemical Industry.
Asunto(s)
Fibras de la Dieta , Harina , Manipulación de Alimentos , Tamaño de la Partícula , Gusto , Triticum , Fibras de la Dieta/análisis , Triticum/química , Harina/análisis , Manipulación de Alimentos/métodos , Aromatizantes/química , Solubilidad , Agua/química , Agua/análisis , Valor NutritivoRESUMEN
During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.
Asunto(s)
Suplementos Dietéticos , Ipomoea batatas , Valor Nutritivo , Fitoquímicos , Ipomoea batatas/química , Suplementos Dietéticos/análisis , Fitoquímicos/química , Fitoquímicos/análisis , Manipulación de Alimentos/métodos , Tubérculos de la Planta/químicaRESUMEN
The application of plant proteins in food systems is largely hindered by their poor foaming or emulsifying properties and low digestibility compared with animal proteins, especially due to the aggregate state with tightly folded structure, slowly adsorbing at the interfaces, generating films with lower mechanical properties, and exposing less cutting sites. Physical fields and pH shifting have certain synergistic effects to efficiently tune the structure and redesign the interfacial layer of plant proteins, further enhancing their foaming or emulsifying properties. The improvement mechanisms mainly include: i) Aggregated plant proteins are depolymerized to form small protein particles and flexible structure is more easily exposed by combination treatment; ii) Particles with appropriate surface properties are quickly adsorbed to the interfacial layer, and then unfolded and rearranged to generate a tightly packed stiff interfacial layer to enhance bubble and emulsion stability; and iii) The unfolding and rearrangement of protein structure at the interface may result in the exposure of more cutting sites of digestive enzymes. This review summarizes the latest research progress on the structural changes, interfacial behaviors, and digestion properties of plant proteins under combined treatment, and elucidates the future development of these modification technologies for plant proteins in the food industry.
RESUMEN
Epigallocatechin gallate (EGCG) and caffeine are inevitable to be ingested together in the process of drinking green tea. This study used Caenorhabditis elegans as an organism model to examine whether the binding of EGCG and caffeine could influence the fat-reduction effect. The results revealed that EGCG significantly reduced the Nile Red fluorescence intensity and the triglyceride/protein ratio of the C. elegans obesity model by 14.7% and 16.5%, respectively, while the effect of caffeine was not significant. Moreover, the degree of reduction in fluorescence intensity and triglyceride/protein ratio by EGCG + caffeine was comparable to that of EGCG. In the exploration of underlying mechanism, we found that EGCG and EGCG + caffeine treatments had no influence on food intake and energy expenditure of C. elegans. Their fat-reduction effects were dependent on the regulation of lipogenesis, as shown by the decreased expression of the sbp-1, fat-7, and daf-16 genes.
Asunto(s)
Cafeína , Catequina , Animales , Cafeína/farmacología , Caenorhabditis elegans , Dieta , Té/química , Catequina/farmacología , Catequina/análisis , Triglicéridos , GlucosaRESUMEN
Coxsackievirus A5 (CV-A5) has recently emerged as a main hand, foot, and mouth disease (HFMD) pathogen. Following a large-scale vaccination campaign against enterovirus 71 (EV-71) in China, the number of HFMD-associated cases with EV-71 was reduced, especially severe and fatal cases. However, the total number of HFMD cases remains high, as HFMD is also caused by other enterovirus serotypes. A multivalent HFMD vaccine containing 4 or 6 antigens of enterovirus serotypes is urgently needed. A formaldehyde-inactivated CV-A5 vaccine derived from Vero cells was used to inoculate newborn Kunming mice on days 3 and 10. The mice were challenged on day 14 with a mouse-adapted CV-A5 strain at a dose that was lethal for 14-day-old suckling mice. Within 14 days postchallenge, groups of mice immunized with three formulations, empty particles (EPs), full particles (FPs), and a mixture of the EP and FP vaccine candidates, all survived, while 100% of the mock-immunized mice died. Neutralizing antibodies (NtAbs) were detected in the sera of immunized mice, and the NtAb levels were correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak or not observed in the immunized mice compared with those in alum-inoculated control mice. Another interesting finding was the identification of CV-A5 dense particles (DPs), facilitating morphogenesis study. These results demonstrated that the Vero cell-adapted CV-A5 strain is a promising vaccine candidate and could be used as a multivalent HFMD vaccine component in the future.IMPORTANCE The vaccine candidate strain CV-A5 was produced with a high infectivity titer and a high viral particle yield. Three particle forms, empty particles (EPs), full particles (FPs), and dense particles (DPs), were obtained and characterized after purification. The immunogenicities of EP, FP, and the EP and FP mixture were evaluated in mice. Mouse-adapted CV-A5 was generated as a challenge strain to infect 14-day-old mice. An active immunization challenge mouse model was established to evaluate the efficacy of the inactivated vaccine candidate. This animal model mimics vaccination, similar to immune responses of the vaccinated. The animal model also tests protective efficacy in response to the vaccine against the disease. This work is important for the preparation of multivalent vaccines against HFMD caused by different emerging strains.
Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunación/métodos , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Modelos Animales de Enfermedad , Enfermedad de Boca, Mano y Pie/virología , Ratones , Serogrupo , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Células Vero , Carga Viral , Vacunas Virales/inmunología , Virión/inmunologíaRESUMEN
Energetic materials (EMs) are the core materials of weapons and equipment. Achieving precise molecular design and efficient green synthesis of EMs has long been one of the primary concerns of researchers around the world. Traditionally, advanced materials were discovered through a trial-and-error processes, which required long research and development (R&D) cycles and high costs. In recent years, the machine learning (ML) method has matured into a tool that compliments and aids experimental studies for predicting and designing advanced EMs. This paper reviews the critical process of ML methods to discover and predict EMs, including data preparation, feature extraction, model construction, and model performance evaluation. The main ideas and basic steps of applying ML methods are analyzed and outlined. The state-of-the-art research about ML applications in property prediction and inverse material design of EMs is further summarized. Finally, the existing challenges and the strategies for coping with challenges in the further applications of the ML methods are proposed.
Asunto(s)
Hidrolasas , Aprendizaje AutomáticoRESUMEN
Antimicrobial activity is a promising property for food packaging which could prolong the shelf life of food products. In this paper, the physicochemical and antimicrobial properties of konjac glucomannan (KGM)/soluble green tea powder (SGTP) edible films were firstly prepared and analyzed through light barrier properties, Fourier transform infrared spectroscopy (FT-IR), tensile strength (TS), X-ray diffraction (XRD), thermogravimetric analysis and scanning electron microscope (SEM). The results showed that appropriate addition of SGTP could improve the TS of composite films. With the increase of SGTP content, the transmittance of the films in the ultraviolet region decreased obviously, and the thermal stability was improved in a SGTP dependent manner. KGM/SGTP films present a fairly smooth and flat surface without any fracture when 0.5% SGTP was provided. The bacteriostatic test showed that the bacteriostatic performance of the composite films against Staphylococcus aureus and Escherichia coli was also significantly enhanced. When 1% SGTP was provided, the zones of inhibition for Escherichia coli and Staphyloccocus aureus reached to 13.45 ± 0.94 mm and 13.76 ± 0.92 mm, respectively. Overall, the KGM/SGTP films showed great potential as bioactive packaging materials to extend food shelf life.
RESUMEN
As a functional polysaccharide, inulin was carboxymethylated and it formed nanocomplexes with bovine serum albumin (BSA). The success of obtaining carboxymethyl inulin (CMI) was confirmed by a combination of Fourier transform Infrared (FT-IR), Raman spectroscopy, gel permeation chromatography (GPC), and titration. The effects of pH and ionic strength on the formation of CMI/BSA nanocomplexes were investigated. Our results showed that the formation of complex coacervate (pHφ1) and dissolution of CMI/BSA insoluble complexes (pHφ2) appeared in pH near 4.85 and 2.00 respectively. FT-IR and Raman data confirmed the existence of electrostatic interaction and hydrogen bonding between CMI and BSA. The isothermal titration calorimetry (ITC) results suggested that the process of complex formation was spontaneous and exothermic. The complexation was dominated by enthalpy changes (∆Η < 0, ∆S < 0) at pH 4.00, while it was contributed by enthalpic and entropic changes (∆Η < 0, ∆S > 0) at pH 2.60. Irregularly shaped insoluble complexes and globular soluble nanocomplexes (about 150 nm) were observed in CMI/BSA complexes at pH 4.00 and 2.60 while using optical microscopy and atomic force microscopy, respectively. The sodium chloride suppression effect on CMI/BSA complexes was confirmed by the decrease of incipient pH for soluble complex formation (or pHc) and pHφ1 under different sodium chloride concentrations. This research presents a new functional system with the potential for delivering bioactive food ingredients.
Asunto(s)
Concentración de Iones de Hidrógeno , Inulina , Complejos Multiproteicos , Nanocompuestos , Albúmina Sérica Bovina , Electricidad Estática , Animales , Calorimetría , Bovinos , Inulina/química , Inulina/metabolismo , Estructura Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Nanocompuestos/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Análisis Espectral , TermodinámicaRESUMEN
In this work the influences of κ-carrageenan (CRG), konjac glucomannan (KGM) and inulin on lysozyme (Ly)'s structure, activity, and their complex phase behavior were investigated through spectroscopy and activity measurement in heated and unheated conditions. It was found that the impact on the structure and activity of Ly was determined by the interactions with polysaccharides. After heat treatment, KGM and CRG improved the stability of complex systems. However, inulin did not have significant impact. Heating process promoted to change the structure of Ly, and the intervention retard following the sequence of CRG > KGM > inulin. The worthwhile work indicated protein's structure and activity could be regulated by the interaction with polysaccharide, which might provide theoretical basis for food preservation and processing in different temperature treatments. Besides, the bidirectional effects of polysaccharide on protein would be beneficial to rational selection of functional properties of polysaccharide/protein systems.
RESUMEN
This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to ß-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.
Asunto(s)
Álcalis , Antioxidantes , Digestión , Lino , Péptidos , Proteínas de Plantas , Lino/química , Péptidos/metabolismo , Péptidos/química , Antioxidantes/química , Antioxidantes/análisis , Proteínas de Plantas/metabolismo , Álcalis/química , Concentración de Iones de Hidrógeno , Hidrólisis , Semillas/química , Manipulación de Alimentos/métodos , Ondas UltrasónicasRESUMEN
In this study, the physicochemical characterization of different ratios of purple sweet potato flour (PSPF) and rice flour was investigated to improve the nutritional value and enrich the variety of rice-based staple food. The results showed that adding PSPF increased total dietary fiber and anthocyanin content whereas decreased amylose content of the composite flours. Additionally, the composite flours exhibited lower thermodynamic parameters and displayed darker, redder, and bluer colors. There were no noticeable changes in the functional group structure of the composite flours. The addition of PSPF decreased the crystallinity and water-holding capacity of the composite flours, whereas increased the average particle size and iodine blue value. PSPF increased the pasting temperature of the flours whereas decreased the breakdown and setback values. Overall, the addition of PSPF significantly affects the nutrition, color and physicochemical properties of the composite flours.
RESUMEN
HYPOTHESIS: Protein-based soft particles possess a unique interfacial deformation behavior, which is difficult to capture and characterize. This complicates the analysis of their interfacial properties. Here, we aim to establish how the particle deformation affects their interfacial structural and mechanical properties. EXPERIMENTS: Gliadin nanoparticles (GNPs) were selected as a model particle. We studied their adsorption behavior, the time-evolution of their morphology, and rheological behavior at the air/water interface by combining dilatational rheology and microstructure imaging. The rheology results were analyzed using Lissajous plots and quantified using the recently developed general stress decomposition (GSD) method. FINDING: Three distinct stages were revealed in the adsorption and rearrangement process. First, spherical GNPs (â¼105 nm) adsorbed to the interface. Then, these gradually deformed along the interface direction to a flattened shape, and formed a firm viscoelastic 2D solid film. Finally, further stretching and merging of GNPs at the interface resulted in rearrangement of their internal structure to form a thick film with lower stiffness than the initial film. These results demonstrate that the structure of GNPs confined at the interface is controlled by their deformability, and the latter can be used to tune the properties of prolamin particle-based multiphase systems.
RESUMEN
Controlling the structure and viscosity of food can influence the development of diet-related diseases. Food viscosity has been linked with health through its impact on human digestion and gastrointestinal transit, however, there is limited understanding of how the viscosity of food regulates gastric emptying. Here, we used model food preparations with different viscosities using guar gum, to explore the mechanism underlying the influence of viscosity on gastric motility, gastric emptying and postprandial blood glucose. Based on experiments in human volunteers and animals, we demonstrated that high viscosity meals increased gastric antrum area and gastric retention rate. Viscosity also affected gut hormone secretion, reduced the gene expression level of interstitial cells of Cajal, resulting in a delay of gastric emptying and limiting the increase in postprandial glucose. This improved mechanistic understanding of food viscosity during gastric digestion is important for designing new foods to benefit human health.
Asunto(s)
Galactanos , Vaciamiento Gástrico , Mananos , Gomas de Plantas , Humanos , Viscosidad , Mananos/química , Mananos/farmacología , Gomas de Plantas/química , Galactanos/química , Galactanos/farmacología , Animales , Masculino , Periodo Posprandial , Adulto , Glucemia/metabolismo , Femenino , Alimentos , Ratones , DigestiónRESUMEN
The astringency of green tea is an integrated result of the synergic and antagonistic effects of individual tea components, whose mechanism is highly complex and not completely understood. Herein, we used an epigallocatechin gallate (EGCG)/caffeine (CAF)/saliva model to simulate the oral conditions during tea drinking. The effect of CAF on the interaction between EGCG and salivary proteins was first investigated using molecular docking and isothermal titration calorimetry (ITC). Then, the rheological properties and the micro-network structure of saliva were studied to relate the molecular interactions and perceived astringency. The results revealed that CAF partially occupied the binding sites of EGCG to salivary proteins, inhibiting their interaction and causing changes in the elastic network structure of the salivary film, thereby reducing astringency.
Asunto(s)
Cafeína , Catequina , Simulación del Acoplamiento Molecular , Saliva , Proteínas y Péptidos Salivales , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Humanos , Cafeína/química , Cafeína/farmacología , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo , Saliva/química , Saliva/metabolismo , Té/química , Unión Proteica , Gusto , Adulto , Astringentes/química , Astringentes/farmacología , Masculino , Adulto JovenRESUMEN
Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.
Asunto(s)
Lino , Proteínas de Soja , Proteínas de Soja/química , Emulsiones/química , Diálisis Renal , Proteínas de Plantas/químicaRESUMEN
In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), which can be used in infant formulas in China national standards, were selected to prepare LF-polysaccharide complexes to improve the stability of lactoferrin. The results showed that LF interacted more strongly with polysaccharides and did not affect the LF structure to a large extent when the pH and protein/polysaccharide mass ratio were 7 and 10:1 for LF-CG, 8 and 5:1 for LF-XG, 7 and 15:1 for LF-LBG. The zeta potential and fluorescence intensity of the LF-polysaccharide complexes displayed a decreasing trend with the increase in pH. When pH < 6, LF-CG and LF-XG exhibited precipitation and increased UV absorbance. Complexation between LF and CG/XG mainly attributed to electrostatic interactions, while LF and LBG form complexes based on hydrogen bonding or hydrophobic interactions. This study could provide a reference for the practical application of LF in infant formula.
Asunto(s)
Fórmulas Infantiles , Lactoferrina , Polisacáridos , Lactoferrina/química , Concentración de Iones de Hidrógeno , Polisacáridos/química , Fórmulas Infantiles/química , Galactanos/química , Polisacáridos Bacterianos/química , Gomas de Plantas/química , Mananos/química , Humanos , Carragenina/químicaRESUMEN
Rice bran is a major by-product of rice processing with abundant nutrient content. Oil bodies (OBs), which are fat particles with unique physicochemical stability, are specialized organelles for the storage of oils and fats in plant tissues. In this study, we extracted OBs from rice bran, to evaluate the function of hydrophobic nutrients efficiently delivered by OBs. The carrier system was prepared by sonicating curcumin with medium chain triglycerides (MCT) into rice bran oil bodies (RBOBs). Emulsions comprising different RBOB mass fractions were characterized. The results showed that the highest encapsulation efficiency (EE, 87.67%), optimal particle size (190 nm), and best storage stability were achieved with the 1.5 wt% RBOBs. Based on activity evaluation data, the carrier system can achieve sustained oil release in the intestine and shows high bioaccessibility (61.04%; IC50 in Caco-2 cells was 77.21 µg/mL), which is important for promoting grain by-product utilization.
Asunto(s)
Digestión , Excipientes , Humanos , Células CACO-2 , Aceite de Salvado de Arroz/química , TriglicéridosRESUMEN
Rice bran oil bodies (RBOBs) are one of the most exploited functional components from rice bran by-products and are predominantly based on oleosin stabilization. In this study, we explored the effects of different concentrations of added (-)-epicatechin, ferulic acid, and phytic acid on the RBOBs stability. The results revealed that the incorporation of all three natural phytoconstituents could reduce the RBOBs particle size and increase emulsifying properties, demonstrating increasing surface hydrophobicity (p < 0.05), and a good antioxidant effect, which was especially obvious with (-)-epicatechin incorporation. Fourier transform infrared (FT-IR) spectroscopy data demonstrated that these three small molecule substance classes can modify with oleosin on RBOBs surface by covalent and noncovalent effects. Raman spectroscopic analysis illustrated that the vibrational modes of disulphide bonds in oleosin were modified by these three plant natural ingredients. The interactions between the three phytoconstituents and the model protein were investigated by molecular docking experiments.
Asunto(s)
Catequina , Oryza , Ácido Fítico/metabolismo , Gotas Lipídicas/metabolismo , Catequina/metabolismo , Proteínas de Plantas/metabolismo , Aceites de Plantas/química , Espectroscopía Infrarroja por Transformada de Fourier , Simulación del Acoplamiento Molecular , Oryza/químicaRESUMEN
Colloidal nanoparticles in tea infusion are the link connecting micromolecular mechanism and macro-aggregation process of tea cream formation. In order to elucidate, the kinetics mechanism of green tea nanoparticles (gTNPs) aggregation, zeta-potentials, total average aggregation (TAA) rates, and critical coagulation concentration (CCC) in the presence of various pH and metal ions were investigated. Additionally, the effect of temperature on gTNPs aggregation was further explored. The results revealed that the TAA rate of gTNPs increased with decreasing pH values, the CCC of gTNPs increased in the order Mg2+ ≈ Ca2+ < Na+ ≈ K+ . The reason was that different positive ions changed the surface electric field strength of gTNPs to a different extent. Furthermore, it was indicated that low temperature could promote gTNPs aggregation in indirect way. Low temperature promoted the binding of epigallocatechin gallate (EGCG) and caffeine, and the combination between gTNPs and EGCG-caffeine complexes weakened the stability of gTNPs resulting from reduction in electrostatic repulsion. PRACTICAL APPLICATION: Tea is a popular beverage all over the world. This research revealed the mechanism of green tea nanoparticles aggregation and laid a theoretical foundation for the regulation of tea cream formation in tea beverage.
Asunto(s)
Catequina , Nanopartículas , Té/química , Cafeína/química , Temperatura , Metales , Iones , Nanopartículas/química , Catequina/química , Concentración de Iones de HidrógenoRESUMEN
The composition of green tea cream is extremely complex, and identification of key components is a prerequisite for elucidating its microstructure formation mechanism. This study examined the dynamic changes in the content of components and properties of colloid particles during the formation process of tea cream by chemical analysis and dynamic laser scattering (DLS). A "knock-out/knock-in" method was developed and used to further explore the relationship between the interaction of these components and the microstructure formation of tea cream. The results revealed that polysaccharides, proteins, epigallocatechin gallate (EGCG), and caffeine were the main components involved in tea cream formation. These components participated in the formation process in the form of polysaccharide-protein and EGCG-caffeine colloidal particles. Consequently, there were synchronized dynamic changes in the levels of polysaccharides, proteins, EGCG, and caffeine. The "knock-out/knock-in" experiment revealed that the interactions between EGCG or caffeine and macro-molecule components were not the key factors in tea cream microstructure formation. However, it was found that the complexation between EGCG and caffeine played a crucial role in the formation of tea cream. The findings suggested that decreasing the concentrations of EGCG and caffeine could be useful in controlling tea cream formation during tea beverage processing and storage.