Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 233(6): 2520-2533, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35015901

RESUMEN

Rice black-streaked dwarf virus disease (RBSDVD) and southern rice black-streaked dwarf virus disease (SRBSDVD) are the most destructive viral diseases in rice. Progress is limited in breeding due to lack of resistance resource and inadequate knowledge on the underlying functional gene. Using genome-wide association study (GWAS), linkage disequilibrium (LD) decay analyses, RNA-sequencing, and genome editing, we identified a highly RBSDVD-resistant variety and its first functional gene. A highly RBSDVD-resistant variety W44 was identified through extensive evaluation of a diverse international rice panel. Seventeen quantitative trait loci (QTLs) were identified among which qRBSDV6-1 had the largest phenotypic effect. It was finely mapped to a 0.8-1.2 Mb region on chromosome 6, with 62 annotated genes. Analysis of the candidate genes underlying qRBSDV6-1 showed high expression of aspartic proteinase 47 (OsAP47) in a susceptible variety, W122, and a low resistance variety, W44. OsAP47 overexpressing lines exhibited significantly reduced resistance, while the knockout mutants exhibited significantly reduced SRBSDVD and RBSDVD severity. Furthermore, the resistant allele Hap1 of OsAP47 is almost exclusive to Indica, but rare in Japonica. Results suggest that OsAP47 knockout by editing is effective for improving RBSDVD and SRBSDVD resistance. This study provides genetic information for breeding resistant cultivars.


Asunto(s)
Proteasas de Ácido Aspártico , Oryza , Virosis , Estudio de Asociación del Genoma Completo , Oryza/genética , Péptido Hidrolasas , Fitomejoramiento , Enfermedades de las Plantas/genética , Reoviridae
2.
Virology ; 594: 110060, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38537391

RESUMEN

Southern rice black-streaked dwarf virus disease (SRBSDVD) is the most destructive viral disease in rice. In order to breeding resistant cultivars, Insertion-Deletion (InDel) markers were developed linked to OsAP47, the first isolated major resistance gene against SRBSDVD. Marker-assisted selection (MAS) was conducted to introduce this gene into the commercial variety. A rice line carrying homozygous resistance allele of OsAP47 was selected and named Kanghei No. 201 (KH201). Evaluated by artificial inoculation, KH201 showed significantly higher resistance than the recurrent parent Suxiu No.867 (SX867). And no significant differences were detected for KH201 in the yield-related components, including spikelets per panicle (SPP), ripened grains per panicle (RGPP), 1000-grain weight (TGW) and panicles per square meter (PPSM), leading to stable theoretical yield. The results indicated that introgression of OsAP47 improved rice resistance and can avoid yield losses produced by SRBSDVD. KH201 was demonstrated as a resistance material that could be used in rice breeding.


Asunto(s)
Oryza , Reoviridae , Reoviridae/genética , Alelos , Oryza/genética , Resistencia a la Enfermedad/genética
3.
Front Microbiol ; 14: 1323569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156012

RESUMEN

Introduction: Rice black-streaked dwarf virus disease (RBSDVD) is one of the most destructive rice viral diseases, leading to severe yield losses in rice production. However, little is known about the yield-related components associated with the disease and no resistance cultivars have been successfully used in rice breeding. Methods: Seven rice cultivars were analyzed in this study, including six commercial rice varieties and a new line Zhongjian No. 201 (ZJ201) containing the resistance gene OsAP47. Resistance levels of these cultivars were evaluated by artificial inoculation and yield components were collected, including panicle length (PL), spikelets per panicle (SPP), ripened grains per panicle (RGPP), as well as panicles per square meter (PPSM) and 1000-grain weight (TGW). Seed setting rate (SSR) were calculated with the data of SPP and RGPP. Results and discussion: The results showed that ZJ201 displayed the highest resistance level and most of the commercial rice cultivars exhibited susceptible to RBSDVD. Yields of all the rice cultivars were significantly declined except ZJ201 and yield losses produced by RBSDVD were mainly due to the reduction of PL, SPP, RGPP, and TGW, suggesting that developments of these traits are associated with RBSDV infection. Resistant rice cultivar could reduce yield losses by maintaining normal development of these traits. Significant correlations were identified between resistance levels and the yield components except SSR and PPSM. The results provided useful clues for understanding the mechanisms of RBSDV invasion and its effect on rice production. ZJ201 was demonstrated as a resistance material that could be used in rice breeding.

4.
Environ Int ; 175: 107939, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37137179

RESUMEN

Hexavalent chromium (Cr(VI)) is more readily taken up by plants than trivalent chromium (Cr(III)) due to its similar chemical structure to phosphate and sulfate. In paddy soils, Cr(VI) of natural origin are mainly produced from Cr(III) oxidized by O2 and Mn(III/IV) oxides, which are affected by rice radial oxygen loss (ROL) and Mn(II)-oxidizing microorganisms (MOM). However, little is known about the effect of ROL and Mn abundance on rice Cr uptake. Here, we investigated the effects on Cr(VI) generation and the subsequent Cr uptake and accumulation with the involvement of two rice cultivars with distinct ROL capacities by increasing soil Mn abundance. Results showed that Mn(II) addition to the soil led to more Cr(III) being released into the pore water, and the dissolved Cr(III) was oxidized to Cr(VI) by ROL and biogenic Mn(III/IV) oxides. The concentration of Cr(VI) in soil and pore water increased linearly with the addition of Mn(II) doses. Mn(II) addition promoted the root-to-shoot translocation and grain accumulation of Cr derived mainly from newly generated Cr(VI) in the soil. These results emphasize that rice ROL and MOM promote the oxidative dissolution of Cr(III) at a high level of soil Mn, resulting in more Cr accumulation in rice grains and increasing dietary Cr exposure risks.


Asunto(s)
Cromo , Oryza , Contaminantes del Suelo , Cromo/química , Oxidación-Reducción , Óxidos/química , Suelo/química , Contaminantes del Suelo/análisis , Solubilidad , Agua
5.
Plants (Basel) ; 10(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834694

RESUMEN

How to use environmentally friendly technology to enhance rice field and grain quality is a challenge for the scientific community. Here, we showed that the application of molecular hydrogen in the form of hydrogen nanobubble water could increase the length, width, and thickness of brown/rough rice and white rice, as well as 1000-grain weight, compared to the irrigation with ditch water. The above results were well matched with the transcriptional profiles of representative genes related to high yield, including up-regulation of heterotrimeric G protein ß-subunit gene (RGB1) for cellular proliferation, Grain size 5 (GS5) for grain width, Small grain 1 (SMG1) for grain length and width, Grain weight 8 (GW8) for grain width and weight, and down-regulation of negatively correlated gene Grain size 3 (GS3) for grain length. Meanwhile, although total starch content in white rice is not altered by HNW, the content of amylose was decreased by 31.6%, which was parallel to the changes in the transcripts of the amylose metabolism genes. In particular, cadmium accumulation in white rice was significantly reduced, reaching 52% of the control group. This phenomenon was correlated well with the differential expression of transporter genes responsible for Cd entering plants, including down-regulated Natural resistance-associated macrophage protein (Nramp5), Heavy metal transporting ATPase (HMA2 and HMA3), and Iron-regulated transporters (IRT1), and for decreasing Cd accumulation in grain, including down-regulated Low cadmium (LCD). This study clearly showed that the application of molecular hydrogen might be used as an effective approach to increase field and grain quality of rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA