Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
FASEB J ; 33(12): 14022-14035, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638828

RESUMEN

Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Envejecimiento , Fenómenos Biomecánicos , Células Cultivadas , Citoesqueleto , Regulación de la Expresión Génica , Humanos , Hidrogeles , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Interferencia de ARN , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
2.
J Biomech Eng ; 136(2): 021010, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24390195

RESUMEN

Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.


Asunto(s)
Matriz Extracelular/fisiología , Colágenos Fibrilares/fisiología , Fibrocartílago/fisiología , Disco Intervertebral/citología , Disco Intervertebral/fisiología , Mecanotransducción Celular/fisiología , Modelos Biológicos , Animales , Diferenciación Celular/fisiología , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Estrés Mecánico
3.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39071400

RESUMEN

Inflammatory cytokine production and de novo neurovascularization have been identified in painful, degenerated intervertebral discs (IVDs). However, the temporal trajectories of these key pathoanatomical features, including the cascade of inflammatory chemokines and neo- vessel and neurite infiltration, and their associations with IVD degeneration, remain relatively unknown. Investigating this process in the caudal mouse IVD enables the opportunity to study the tissue-specific response without confounding inflammatory signaling from neighboring structures. Thus this study aims to define the progression of chemokine production and neurovascular invasion during the IVD degeneration initiated by injury in the caudal spine 3-month-old C57BL6/J mice. Forty-nine IVD-secreted chemokines and matrix metalloproteinases (MMPs) was measured using multiplex ELISA, and the intradiscal infiltrating vessels (endomucin) and nerves (protein-gene-product 9.5) was quantified in the tissue volume using immunohistochemistry. Injury provoked the increase secretion of IL6, CCL2, CCL12, CCL17, CCL20, CCL21, CCL22, CXCL2 and MMP2 proteins. The centrality and structure of inflammatory networks in IVDs evolved over the 12 post-injury weeks, highlighting distinct responses between the acute and chronic phases. Neurites propagated rapidly within 2-weeks post-injury and remained relatively constant until 12-weeks. Vascular vessel length was observed to peak at 4-weeks post-injury and it regressed by 12-weeks. These findings identified the temporal flux of inflammatory chemokines and pain-associated pathoanatomy in a model of IVD degeneration using the mouse caudal spine.

4.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005297

RESUMEN

Human mesenchymal stem cells (MSCs) have demonstrated promise when delivered to damaged tissue or tissue defects for their cytokine secretion and inflammation modulation behaviors that can promote repair. Insulin-like growth factor 1 (IGF-1) has been shown to augment MSCs' viability and survival and promote their secretion of cytokines that signal to endogenous cells, in the treatment of myocardial infarction, wound healing, and age-related diseases. Biomaterial cell carriers can be functionalized with growth factor-mimetic peptides to enhance MSC function while promoting cell retention and minimizing off-target effects seen with direct administration of soluble growth factors. Here, we functionalized alginate hydrogels with three distinct IGF-1 peptide mimetics and the integrin-binding peptide, cyclic RGD. One IGF-1 peptide mimetic (IGM-3) was found to activate Akt signaling and support survival of serum-deprived MSCs. MSCs encapsulated in alginate hydrogels that presented both IGM-3 and cRGD showed a significant reduction in pro-inflammatory cytokine secretion when challenged with interleukin-1ß. Finally, MSCs cultured within the cRGD/IGM-3 hydrogels were able to blunt pro-inflammatory gene expression of human primary cells from degenerated intervertebral discs. These studies indicate the potential to leverage cell adhesive and IGF-1 growth factor peptide mimetics together to control therapeutic secretory behavior of MSCs. Significance Statement: Insulin-like growth factor 1 (IGF-1) plays a multifaceted role in stem cell biology and may promote proliferation, survival, migration, and immunomodulation for MSCs. In this study, we functionalized alginate hydrogels with integrin-binding and IGF-1 peptide mimetics to investigate their impact on MSC function. Embedding MSCs in these hydrogels enhanced their ability to reduce inflammatory cytokine production and promote anti-inflammatory gene expression in cells from degenerative human intervertebral discs exposed to proteins secreted by the MSC. This approach suggests a new way to retain and augment MSC functionality using IGF-1 peptide mimetics, offering an alternative to co-delivery of cells and high dose soluble growth factors for tissue repair and immune- system modulation.

5.
JOR Spine ; 6(1): e1238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36994456

RESUMEN

Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.

6.
Appl Sci (Basel) ; 12(16)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36451894

RESUMEN

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.

7.
Arthritis Rheum ; 62(7): 1974-82, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20222111

RESUMEN

OBJECTIVE: Prior reports document macrophage and lymphocyte infiltration with proinflammatory cytokine expression in pathologic intervertebral disc (IVD) tissues. Nevertheless, the role of the Th17 lymphocyte lineage in mediating disc disease remains uninvestigated. We undertook this study to evaluate the immunophenotype of pathologic IVD specimens, including interleukin-17 (IL-17) expression, from surgically obtained IVD tissue and from nondegenerated autopsy control tissue. METHODS: Surgical IVD tissues were procured from patients with degenerative disc disease (n = 25) or herniated IVDs (n = 12); nondegenerated autopsy control tissue was also obtained (n = 8) from the anulus fibrosus and nucleus pulposus regions. Immunohistochemistry was performed for cell surface antigens (CD68 for macrophages, CD4 for lymphocytes) and various cytokines, with differences in cellularity and target immunoreactivity scores analyzed between surgical tissue groups and between autopsy control tissue regions. RESULTS: Immunoreactivity for IL-4, IL-6, IL-12, and interferon-gamma (IFNgamma) was modest in surgical IVD tissue, although expression was higher in herniated IVD samples and virtually nonexistent in control samples. The Th17 lymphocyte product IL-17 was present in >70% of surgical tissue fields, and among control samples was detected rarely in anulus fibrosus regions and modestly in nucleus pulposus regions. Macrophages were prevalent in surgical tissues, particularly herniated IVD samples, and lymphocytes were expectedly scarce. Control tissue revealed lesser infiltration by macrophages and a near absence of lymphocytes. CONCLUSION: Greater IFNgamma positivity, macrophage presence, and cellularity in herniated IVDs suggests a pattern of Th1 lymphocyte activation in this pathology. Remarkable pathologic IVD tissue expression of IL-17 is a novel finding that contrasts markedly with low levels of IL-17 in autopsy control tissue. These findings suggest involvement of Th17 lymphocytes in the pathomechanism of disc degeneration.


Asunto(s)
Interleucina-17/metabolismo , Degeneración del Disco Intervertebral/patología , Desplazamiento del Disco Intervertebral/patología , Linfocitos T Colaboradores-Inductores/patología , Adulto , Factores de Edad , Biomarcadores/metabolismo , Citocinas/metabolismo , Femenino , Humanos , Degeneración del Disco Intervertebral/inmunología , Degeneración del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/inmunología , Desplazamiento del Disco Intervertebral/metabolismo , Activación de Linfocitos , Subgrupos Linfocitarios , Macrófagos/inmunología , Macrófagos/patología , Masculino , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
8.
Acta Biomater ; 131: 117-127, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229105

RESUMEN

Degeneration of the intervertebral disc (IVD) is associated with significant biochemical and morphological changes that include a loss of disc height, decreased water content and decreased cellularity. Cell delivery has been widely explored as a strategy to supplement the nucleus pulposus (NP) region of the degenerated IVD in both pre-clinical and clinical trials, using progenitor or primary cell sources. We previously demonstrated an ability for a polymer-peptide hydrogel, serving as a culture substrate, to promote adult NP cells to undergo a shift from a degenerative fibroblast-like state to a juvenile-like NP phenotype. In the current study, we evaluate the ability for this peptide-functionalized hydrogel to serve as a bioactive system for cell delivery, retention and preservation of a biosynthetic phenotype for primary IVD cells delivered to the rat caudal disc in an anular puncture degeneration model. Our data suggest that encapsulation of adult degenerative human NP cells in a stiff formulation of the hydrogel functionalized with laminin-mimetic peptides IKVAV and AG73 can promote cell viability and increased biosynthetic activity for this population in 3D culture in vitro. Delivery of the peptide-functionalized biomaterial with primary rat cells to the degenerated IVD supported NP cell retention and NP-specific protein expression in vivo, and promoted improved disc height index (DHI) values and endplate organization compared to untreated degenerated controls. The results of this study suggest the physical cues of this peptide-functionalized hydrogel can serve as a supportive carrier for cell delivery to the IVD. STATEMENT OF SIGNIFICANCE: Cell delivery into the degenerative intervertebral disc has been widely explored as a strategy to supplement the nucleus pulposus. The current work seeks to employ a biomaterial functionalized with laminin-mimetic peptides as a cell delivery scaffold in order to improve cell retention rates within the intradiscal space, while providing the delivered cells with biomimetic cues in order to promote phenotypic expression and increase biosynthetic activity. The use of the in situ crosslinkable material integrated with the native IVD, presenting a system with adequate physical properties to support a degenerative disc.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Hidrogeles/farmacología , Degeneración del Disco Intervertebral/terapia , Péptidos/farmacología , Polímeros , Ratas
9.
J Tissue Eng ; 12: 20417314211021220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34188794

RESUMEN

The nucleus pulposus (NP) of the intervertebral disc plays a critical role in distributing mechanical loads to the axial skeleton. Alterations in NP cells and, consequently, NP matrix are some of the earliest changes in the development of disc degeneration. Previous studies demonstrated a role for laminin-presenting biomaterials in promoting a healthy phenotype for human NP cells from degenerated tissue. Here we investigate the use of laminin-mimetic peptides presented individually or in combination on a poly(ethylene) glycol hydrogel as a platform to modulate the behaviors of degenerative human NP cells. Data confirm that NP cells attach to select laminin-mimetic peptides that results in cell signaling downstream of integrin and syndecan binding. Furthermore, the peptide-functionalized hydrogels demonstrate an ability to promote cell behaviors that mimic that of full-length laminins. These results identify a set of peptides that can be used to regulate NP cell behaviors toward a regenerative engineering strategy.

10.
Biomaterials ; 250: 120057, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32361392

RESUMEN

Cells of the nucleus pulposus have been observed to undergo a shift from their notochordal-like juvenile phenotype to a more fibroblast-like state with age and maturation. It has been demonstrated that culture of degenerative adult human nucleus pulposus cells upon soft (<1 kPa) full length laminin-containing hydrogel substrates promotes increased levels of a panel of markers associated with the juvenile nucleus pulposus cell phenotype. In the current work, we observed an ability to use soft polymeric substrates functionalized with short laminin-mimetic peptide sequences to recapitulate the behaviors elicited by soft, full-length laminin containing materials. Furthermore, our work suggests an ability to mimic features of soft systems through control of peptide density upon stiffer substrates. Specifically, results suggest that stiffer polymer-peptide hydrogel substrates can be used to promote the expression of a more juvenile-like phenotype for cells of the nucleus pulposus by reducing adhesive ligand presentation. Here we show how polymer stiffness combined with adhesive ligand presentation can be controlled to be supportive of nucleus pulposus cell phenotype and biosynthesis.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Adhesivos , Adulto , Humanos , Laminina , Ligandos , Fenotipo
11.
JOR Spine ; 3(4): e1111, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33392449

RESUMEN

Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.

12.
Connect Tissue Res ; 50(5): 294-306, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19863388

RESUMEN

Intervertebral disc (IVD) disorders are believed to be related to aging-related cell loss and phenotypic changes, as well as biochemical and structural changes in the extracellular matrix of the nucleus pulposus (NP) region. Previously, we found that the laminin gamma1 chain was more highly expressed in immature NP porcine tissues, in parallel with the expression pattern for a laminin receptor, integrin alpha6 subunit, as compared to adjacent anulus fibrosus region. This result suggests that cell-matrix interactions may be unique to the immature NP. However, the identity of laminin isoforms specific to immature or mature NP tissues, their associated receptors, and functional significance are still poorly understood. In this study, we evaluated the zonal-specific expression of the laminin chains, receptors (i.e., integrins), and other binding proteins in immature tissue and isolated cells of rat, porcine and human intervertebral disc. Our goal was to reveal features of cellular environment and cell-matrix interactions in the immature NP. Results from both immunohistochemical staining and flow cytometry analysis found that NP cells expressed higher levels of the laminin alpha5 chain, laminin receptors (integrin alpha3, alpha6, beta4 subunit, and CD239), and related binding proteins (CD151), as compared to cells from adjacent anulus fibrosus. These differences suggest that laminin interactions with NP cells are distinct from that of the anulus fibrosus and that laminins may be important contributors to region-specific IVD biology. The revealed laminin isoforms, their receptors, and related binding proteins may be used as distinguishing features of these immature NP cells in the intervertebral disc.


Asunto(s)
Proteínas Portadoras/metabolismo , Condrocitos/metabolismo , Disco Intervertebral/crecimiento & desarrollo , Disco Intervertebral/metabolismo , Laminina/metabolismo , Receptores de Laminina/metabolismo , Adolescente , Animales , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Niño , Preescolar , Condrocitos/citología , Matriz Extracelular/metabolismo , Citometría de Flujo , Humanos , Inmunohistoquímica , Integrina alfa3/metabolismo , Integrina alfa6/metabolismo , Integrina beta4/metabolismo , Disco Intervertebral/citología , Laminina/química , Sistema del Grupo Sanguíneo Lutheran/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Sus scrofa , Tetraspanina 24
13.
Sci Rep ; 9(1): 3759, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842475

RESUMEN

Low back pain is associated with degeneration of the intervertebral disc, but specific mechanisms of pain generation in this pathology remain unknown. Sensory afferent nerve fiber growth into the intervertebral disc after injury-induced inflammation may contribute to discogenic pain. We describe a clinically relevant behavioral phenotype in a rodent model of chronic intervertebral disc degeneration which provides a means to map sensory neuron changes to a single affected lumbar intervertebral disc. Unilateral disc puncture of one lumbar intervertebral disc revealed a bilateral behavioral phenotype characterized by gait changes and decreased activity. Moreover, neurons extracted from the dorsal root ganglia in animals with intervertebral disc injury demonstrated altered TRPV1 activation in vitro independent of exogenous NGF administration. Finally, neuronal nuclear hypertrophy and elevated expression of p75NTR provide evidence of active adaptation of innervating sensory neurons in chronic intervertebral disc degeneration. Therefore, this model and findings provide the template for future studies to establish specific mechanisms of nociceptive pain in chronic intervertebral disc degeneration.


Asunto(s)
Ganglios Espinales/fisiopatología , Degeneración del Disco Intervertebral/fisiopatología , Dolor de la Región Lumbar/etiología , Animales , Modelos Animales de Enfermedad , Femenino , Análisis de la Marcha , Degeneración del Disco Intervertebral/complicaciones , Dolor de la Región Lumbar/fisiopatología , Plasticidad Neuronal , Proyectos Piloto , Ratas , Ratas Sprague-Dawley
14.
J Neurosurg Spine ; 9(2): 221-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18764758

RESUMEN

OBJECT: Biochemical irritation of the dorsal root ganglion (DRG) after intervertebral disc herniation contributes to radiculopathy through tumor necrosis factor-alpha (TNFalpha)-mediated inflammation. Soluble TNF receptor Type II (sTNFRII) sequesters this cytokine, providing clinical benefit. Previous work involving conjugation of sTNFRII with thermally responsive elastin-like polypeptide (ELP) yielded a chimeric protein (ELP-sTNFRII) with in vitro anti-TNFalpha bioactivity. Furthermore, temperature-triggered ELP aggregation into a "depot" prolongs protein residence time following perineural injection. In this study the authors evaluated the inflammatory phenotype of DRG explants after TNFalpha stimulation, and assessed the abilities of sTNFRII or ELP-sTNFRII to attenuate these neuro-inflammatory changes. METHODS: Rat lumbar DRGs (35 animals) were treated in 6 groups, as follows: control; TNFalpha (25 ng/ml); TNFalpha with low-(0.2 microg/ml) or high-dose (1 microg/ml) sTNFRII; and TNFalpha with low-(52.5 microg/ml) or high-dose (262.5 microg/ml) ELP-sTNFRII. After 24 hours, supernatant was evaluated for inflammatory cytokines (interleukin [IL]-1, IL-6, and IL-10); prostaglandin E2; and metabolites (glutamate, lactate, and pyruvate). Single-factor analysis of variance with post hoc Dunn analysis (alpha = 0.05) was used to assess treatment differences. RESULTS: Incubation of explants with TNFalpha caused metabolic stress reflected by an increased lactate/pyruvate ratio (1.8 +/- 0.5-fold) and extracellular glutamate (79 +/- 8% increase). Inflammatory activation was observed with heightened IL-6 release (5.2 +/- 1.4-fold) and prostaglandin E2 production (14 +/- 3-fold). An autoregulatory response occurred with an 11.8 +/- 0.6-fold increase in sTNFRI shedding. Treatment with high doses of sTNFRII or ELP-sTNFRII reversed all changes. Values are expressed as the mean +/- standard deviation. CONCLUSIONS: These results demonstrate that TNFalpha stimulation of DRG explants yields a phenotype of neurotoxic metabolite release and inflammatory mediator expression. Coincubation with either sTNFRII or ELP-sTNFRII antagonizes TNFalpha activity to abrogate these changes, suggesting potential for therapeutic intervention to treat peripheral nerve inflammatory disease.


Asunto(s)
Ganglios Espinales , Radiculopatía/tratamiento farmacológico , Receptores Tipo II del Factor de Necrosis Tumoral/administración & dosificación , Animales , Citocinas/análisis , Dinoprostona/análisis , Portadores de Fármacos , Endotoxinas/análisis , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/farmacología
15.
Stem Cell Res Ther ; 9(1): 61, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523190

RESUMEN

BACKGROUND: Intervertebral disc (IVD) degeneration is characterized by an early decrease in cellularity of the nucleus pulposus (NP) region, and associated extracellular matrix changes, reduced hydration, and progressive degeneration. Cell-based IVD therapy has emerged as an area of great interest, with studies reporting regenerative potential for many cell sources, including autologous or allogeneic chondrocytes, primary IVD cells, and stem cells. Few approaches, however, have clear strategies to promote the NP phenotype, in part due to a limited knowledge of the defined markers and differentiation protocols for this lineage. Here, we developed a new protocol for the efficient differentiation of human induced pluripotent stem cells (hiPSCs) into NP-like cells in vitro. This differentiation strategy derives from our knowledge of the embryonic notochordal lineage of NP cells as well as strategies used to support healthy NP cell phenotypes for primary cells in vitro. METHODS: An NP-genic phenotype of hiPSCs was promoted in undifferentiated hiPSCs using a stepwise, directed differentiation toward mesodermal, and subsequently notochordal, lineages via chemically defined medium and growth factor supplementation. Fluorescent cell imaging was used to test for pluripotency markers in undifferentiated cells. RT-PCR was used to test for potential cell lineages at the early stage of differentiation. Cells were checked for NP differentiation using immunohistochemistry and histological staining at the end of differentiation. To enrich notochordal progenitor cells, hiPSCs were transduced using lentivirus containing reporter constructs for transcription factor brachyury (T) promoter and green fluorescent protein (GFP) fluorescence, and then sorted on T expression based on GFP intensity by flow cytometry. RESULTS: Periods of pellet culture following initial induction were shown to promote the vacuolated NP cell morphology and NP surface marker expression, including CD24, LMα5, and Basp1. Enrichment of brachyury (T) positive cells using fluorescence-activated cell sorting was shown to further enhance the differentiation efficiency of NP-like cells. CONCLUSIONS: The ability to efficiently differentiate human iPSCs toward NP-like cells may provide insights into the processes of NP cell differentiation and provide a cell source for the development of new therapies for IVD diseases.


Asunto(s)
Condrocitos/citología , Células Madre Pluripotentes Inducidas/citología , Núcleo Pulposo/citología , Diferenciación Celular , Técnicas de Reprogramación Celular/métodos , Humanos
16.
Acta Biomater ; 55: 100-108, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28433788

RESUMEN

Nucleus pulposus (NP) cells are derived from the notochord and differ from neighboring cells of the intervertebral disc in phenotypic marker expression and morphology. Adult human NP cells lose this phenotype and morphology with age in a pattern that contributes to progressive disc degeneration and pathology. Select laminin-mimetic peptide ligands and substrate stiffnesses were examined for their ability to regulate human NP cell phenotype and biosynthesis through the expression of NP-specific markers aggrecan, N-cadherin, collagen types I and II, and GLUT1. Peptide-conjugated substrates demonstrated an ability to promote expression of healthy NP-specific markers, as well as increased biosynthetic activity. We show an ability to re-express markers of the juvenile NP cell and morphology through control of peptide presentation and stiffness on well-characterized polyacrylamide substrates. NP cells cultured on surfaces conjugated with α3 integrin receptor peptides P4 and P678, and on α2, α5, α6, ß1 integrin-recognizing peptide AG10, show increased expression of aggrecan, N-cadherin, and types I and II collagen, suggesting a healthier, more juvenile-like phenotype. Multi-cell cluster formation was also observed to be more prominent on peptide-conjugated substrates. These findings indicate a critical role for cell-matrix interactions with specific ECM-mimetic peptides in supporting and maintaining a healthy NP cell phenotype and bioactivity. STATEMENT OF SIGNIFICANCE: NP cells reside in a laminin-rich environment that deteriorates with age, including a loss of water content and changes in the extracellular matrix (ECM) structure that may lead to the development of a degenerated IVD. There is great interest in methods to re-express healthy, biosynthetically active NP cells using laminin-derived biomimetic peptides toward the goal of using autologous cell sources for tissue regeneration. Here, we describe a novel study utilizing several laminin mimetic peptides conjugated to polyacrylamide gels that are able to support an immature, healthy NP phenotype after culture on "soft" peptide gels. These findings can support future studies in tissue regeneration where cells may be directed to a desired regenerative phenotype using niche-specific ECM peptides.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Regulación de la Expresión Génica , Disco Intervertebral/metabolismo , Laminina/química , Péptidos/química , Resinas Acrílicas/química , Adulto , Anciano , Agrecanos/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Femenino , Humanos , Integrinas/metabolismo , Disco Intervertebral/citología , Masculino , Persona de Mediana Edad
17.
J Orthop Res ; 34(8): 1316-26, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27018499

RESUMEN

Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016.


Asunto(s)
Envejecimiento/metabolismo , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Adolescente , Adulto , Anciano , Envejecimiento/patología , Niño , Colágeno Tipo II/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Núcleo Pulposo/patología , Fenotipo
18.
Sci Rep ; 6: 28038, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27292569

RESUMEN

Nucleus pulposus (NP) cells of the intervertebral disc are essential for synthesizing extracellular matrix that contributes to disc health and mechanical function. NP cells have a unique morphology and molecular expression pattern derived from their notochordal origin, and reside in N-cadherin (CDH2) positive cell clusters in vivo. With disc degeneration, NP cells undergo morphologic and phenotypic changes including loss of CDH2 expression and ability to form cell clusters. Here, we investigate the role of CDH2 positive cell clusters in preserving healthy, biosynthetically active NP cells. Using a laminin-functionalized hydrogel system designed to mimic features of the native NP microenvironment, we demonstrate NP cell phenotype and morphology is preserved only when NP cells form CDH2 positive cell clusters. Knockdown (CRISPRi) or blocking CDH2 expression in vitro and in vivo results in loss of a healthy NP cell. Findings also reveal that degenerate human NP cells that are CDH2 negative can be promoted to re-express CDH2 and healthy, juvenile NP matrix synthesis patterns by promoting cell clustering for controlled microenvironment conditions. This work also identifies CDH2 interactions with ß-catenin-regulated signaling as one mechanism by which CDH2-mediated cell interactions can control NP cell phenotype and biosynthesis towards maintenance of healthy intervertebral disc tissues.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Técnicas de Cultivo de Célula/métodos , Núcleo Pulposo/citología , Adolescente , Adulto , Anciano , Animales , Comunicación Celular , Células Cultivadas , Niño , Técnicas de Silenciamiento del Gen , Humanos , Persona de Mediana Edad , Núcleo Pulposo/metabolismo , Fenotipo , Transducción de Señal , Porcinos , Adulto Joven , beta Catenina/metabolismo
19.
Cell Mol Bioeng ; 8(1): 51-62, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25848407

RESUMEN

Juvenile nucleus pulposus (NP) cells of the intervertebral disc (IVD) are large, vacuolated cells that form cell clusters with strong cell-cell interactions. With maturation and aging, NP cells lose their ability to form these cell clusters, with aging-associated changes in NP cell phenotype, morphology, and proteoglycan synthesis that may contribute to IVD degeneration. Therefore, it is important to understand the mechanisms governing juvenile NP cell cluster behavior towards the goal of revealing factors that can promote juvenile, healthy NP cell phenotypes. N-cadherin has been identified as a cell-cell adhesion marker that is present in juvenile NP cells, but disappears with age. The goal of this study was to reveal the importance of N-cadherin in regulating cell-cell interactions in juvenile NP cell cluster formation and test for a regulatory role in maintaining a juvenile NP phenotype in vitro. Juvenile porcine IVD cells, of notochordal origin, were promoted to form cell clusters in vitro, and analyzed for preservation of the juvenile NP phenotype. Additionally, cadherin-blocking experiments were performed to prevent cluster formation in order to study the importance of cluster formation in NP cell signaling. Findings reveal N-cadherin-mediated cell-cell contacts promote cell clustering behavior and regulate NP cell matrix production and preservation of NP-specific markers. Inhibition of N-cadherin-mediated contacts resulted in loss of all features of the juvenile NP cell. These results establish a regulatory role for N-cadherin in juvenile NP cells, and suggest that preservation of the N-cadherin mediated cell-cell contact is important for preserving juvenile NP cell phenotype and morphology.

20.
Acta Biomater ; 10(3): 1102-11, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24287160

RESUMEN

Intervertebral disc (IVD) disorders and age-related degeneration are believed to contribute to lower back pain. There is significant interest in cell-based strategies for regenerating the nucleus pulposus (NP) region of the disc; however, few scaffolds have been evaluated for their ability to promote or maintain an immature NP cell phenotype. Previous studies have shown that NP cell-laminin interactions promote cell adhesion and biosynthesis, which suggests a laminin-functionalized biomaterial may be useful for promoting or maintaining the NP cell phenotype. Here, a photocrosslinkable poly(ethylene glycol)-laminin 111 (PEG-LM111) hydrogel was developed. The mechanical properties of PEG-LM111 hydrogel could be tuned within the range of dynamic shear moduli values previously reported for human NP. When primary immature porcine NP cells were seeded onto PEG-LM111 hydrogels of varying stiffnesses, LM111-presenting hydrogels were found to promote cell clustering and increased levels of sGAG production as compared to stiffer LM111-presenting and PEG-only gels. When cells were encapsulated in 3-D gels, hydrogel formulation was found to influence NP cell metabolism and expression of proposed NP phenotypic markers, with higher expression of N-cadherin and cytokeratin 8 observed for cells cultured in softer (<1kPa) PEG-LM111 hydrogels. Overall, these findings suggest that soft, LM111-functionalized hydrogels may promote or maintain the expression of specific markers characteristic of an immature NP cell phenotype.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Disco Intervertebral/fisiología , Laminina/farmacología , Luz , Polietilenglicoles/farmacología , Regeneración/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Inmunohistoquímica , Disco Intervertebral/citología , Disco Intervertebral/efectos de los fármacos , Fenómenos Mecánicos , Fenotipo , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA