Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 20(5): e2305855, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759418

RESUMEN

Solar interfacial evaporation is a promising method for solving the global shortage of fresh water. While 2D evaporators can efficiently localize solar-converted heat at the thin layer of the water-air interface, 3D solar evaporators can maximize energy reutilization while maintaining effective mass transport ability, few studies are conducted to explore the effect of gradient porosity on evaporation performance. In this study, a multifield assisted strategy based on a gradient 3D structure with high tortuosity is proposed, which creates a thermal field environment for efficient evaporation through high absorption of sunlight and excellent photothermal conversion and uses the gradient structure to optimize the internal pressure field to enhance water evaporation and transport. This hierarchically nanostructured solar absorber, with porosity inhomogeneity-induced pressure gradient and optimized temperature management, is a valuable design idea for manufacturing a more efficient 3D solar evaporator in the field of seawater desalination. Owing to the understanding of optimizing the dimension by various simulation parameters, the evaporation efficiencies of such structures are found to be 165.7%, suppressing the most evaporator. Moreover, it can provide new ideas and references for the fields of mass transfer and thermal management.

2.
Plant Physiol ; 193(2): 1491-1507, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37315209

RESUMEN

Cold and drought stresses severely limit crop production and can occur simultaneously. Although some transcription factors and hormones have been characterized in plants subjected each stress, the role of metabolites, especially volatiles, in response to cold and drought stress exposure is rarely studied due to lack of suitable models. Here, we established a model for studying the role of volatiles in tea (Camellia sinensis) plants experiencing cold and drought stresses simultaneously. Using this model, we showed that volatiles induced by cold stress promote drought tolerance in tea plants by mediating reactive oxygen species and stomatal conductance. Needle trap microextraction combined with GC-MS identified the volatiles involved in the crosstalk and showed that cold-induced (Z)-3-hexenol improved the drought tolerance of tea plants. In addition, silencing C. sinensis alcohol dehydrogenase 2 (CsADH2) led to reduced (Z)-3-hexenol production and significantly reduced drought tolerance in response to simultaneous cold and drought stress. Transcriptome and metabolite analyses, together with plant hormone comparison and abscisic acid (ABA) biosynthesis pathway inhibition experiments, further confirmed the roles of ABA in (Z)-3-hexenol-induced drought tolerance of tea plants. (Z)-3-Hexenol application and gene silencing results supported the hypothesis that (Z)-3-hexenol plays a role in the integration of cold and drought tolerance by stimulating the dual-function glucosyltransferase UGT85A53, thereby altering ABA homeostasis in tea plants. Overall, we present a model for studying the roles of metabolites in plants under multiple stresses and reveal the roles of volatiles in integrating cold and drought stresses in plants.


Asunto(s)
Camellia sinensis , Respuesta al Choque por Frío , Ácido Abscísico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Sequías , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882446

RESUMEN

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Asunto(s)
Camellia sinensis , Lepidópteros , Animales , Camellia sinensis/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Herbivoria , Larva , Té/metabolismo , Glucósidos/metabolismo , Proteínas de Plantas/metabolismo
4.
Plant Dis ; 108(2): 382-397, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37552163

RESUMEN

Black rot is a common disease of Gastrodia elata, causing serious threats to G. elata production. In this study, a total of 17 Cylindrocarpon-like strains were isolated from G. elata black rot tissues. Multilocus sequence analyses based on ITS, HIS, TEF, and TUB combined with morphological characterizations were performed to identify six Ilyonectria species, including four new species, Ilyonectria longispora, I. sinensis, I. xiaocaobaensis, and I. yunnanensis, and two known species, I. changbaiensis and I. robusta. The pathogenicity of 11 isolates comprising type strains of the four new species and representative isolates from each of the six species was tested on healthy tissues of G. elata. All isolates were pathogenic to G. elata tissues, and symptoms were identical to black rot disease, confirming that our isolates were the causal agents of black rot disease of G. elata.


Asunto(s)
Gastrodia
5.
Plant Dis ; : PDIS02240360RE, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956749

RESUMEN

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.

6.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475037

RESUMEN

To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.


Asunto(s)
Cadmio , Lactuca , Complejo de Proteína del Fotosistema II/metabolismo , Fluorescencia , Fotosíntesis , Clorofila , Plantones , Hojas de la Planta/metabolismo
7.
Plant J ; 109(6): 1489-1506, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931743

RESUMEN

Cold and drought stress are the most critical stresses encountered by crops and occur simultaneously under field conditions. However, it is unclear whether volatiles contribute to both cold and drought tolerance, and if so, by what mechanisms they act. Here, we show that airborne eugenol can be taken up by the tea (Camellia sinensis) plant and metabolized into glycosides, thus enhancing cold and drought tolerance of tea plants. A uridine diphosphate (UDP)-glucosyltransferase, UGT71A59, was discovered, whose expression is strongly induced by multiple abiotic stresses. UGT71A59 specifically catalyzes glucosylation of eugenol glucoside in vitro and in vivo. Suppression of UGT71A59 expression in tea reduced the accumulation of eugenol glucoside, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold and drought stress tolerance. Exposure to airborne eugenol triggered a marked increase in UGT71A59 expression, eugenol glucoside accumulation, and cold tolerance by modulating ROS accumulation and CBF1 expression. It also promoted drought tolerance by altering abscisic acid homeostasis and stomatal closure. CBF1 and CBF3 play positive roles in eugenol-induced cold tolerance and CBF2 may be a negative regulator of eugenol-induced cold tolerance in tea plants. These results provide evidence that eugenol functions as a signal in cold and drought tolerance regulation and shed new light on the biological functions of volatiles in the response to multiple abiotic stresses in plants.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Frío , Sequías , Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Té/metabolismo
8.
BMC Genomics ; 24(1): 362, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380940

RESUMEN

BACKGROUND: PYL (Pyrabactin resistance 1-like) protein is a receptor of abscisic acid (ABA), which plays an important role in ABA signaling and influences plant growth and development and stress response. However, studies on PYL gene family in tea plants have not been reported. RESULTS: In this study, we identified 20 PYL genes from the reference genome of tea plant ('Shuchazao'). Phylogeny analysis indicated that PYLs from tea and other plant species were clustered into seven groups. The promoter region of PYL genes contains a large number of cis-elements related to hormones and stresses. A large number of PYL genes responding to stress were found by analyzing the expression levels of abiotic stress and biotic stress transcriptome data. For example, CSS0047272.1 were up-regulated by drought stress, and CSS0027597.1 could respond to both anthracnose disease and geometrid feeding treatments. In addition, 10 PYL genes related to growth and development were verified by RT-qPCR and their tissue expression characteristics were revealed. CONCLUSIONS: Our results provided a comprehensive characteristic of the PYL gene family in tea plants and provided an important clue for further exploring its functions in the growth and development, and resistance to stress of tea plants.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Ácido Abscísico , Sequías , Transcriptoma ,
9.
New Phytol ; 238(5): 2080-2098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36908092

RESUMEN

Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.


Asunto(s)
Glicosiltransferasas , Lignina , Glicosiltransferasas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Carotenoides/metabolismo , Nicotiana/metabolismo
10.
Plant Physiol ; 188(3): 1507-1520, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893910

RESUMEN

Plant immune response following pathogenic infection is regulated by plant hormones, and salicylic acid (SA) and its sugar conjugates play important roles in establishing basal resistance. Here, the important pathogen Pseudopestalotiopsis camelliae-sinensis (Pcs) was isolated from tea gray blight, one of the most destructive diseases in tea plantations. Transcriptomic analysis led to the discovery of the putative Camellia sinensis UDP-glucosyltransferase CsUGT87E7 whose expression was significantly induced by SA application and Pcs infection. Recombinant CsUGT87E7 glucosylates SA with a Km value of 12 µM to form SA glucose ester (SGE). Downregulation reduced the accumulation of SGE, and CsUGT87E7-silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. Similarly, CsUGT87E7-silenced tea leaves accumulated significantly less SA after infection and showed reduced expression of pathogenesis-related genes. These results suggest that CsUGT87E7 is an SA carboxyl glucosyltransferase that plays a positive role in plant disease resistance by modulating SA homeostasis through a mechanism distinct from that described in Arabidopsis (Arabidopsis thaliana). This study provides insight into the mechanisms of SA metabolism and highlights the role of SGE in the modulation of plant disease resistance.


Asunto(s)
Ascomicetos/patogenicidad , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/microbiología , Resistencia a la Enfermedad/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ácido Salicílico/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Enfermedades de las Plantas/microbiología
11.
Chem Rec ; 23(4): e202300022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36942945

RESUMEN

Thermal protection is one of the crucial issues for the advanced propulsion systems of Reusable Launch Vehicles. New service requirements for materials, such as high strength, low density, low thermal expansion, high thermal stability, etc., are raised for the thermal structure with the increasing demand of flight Mach numbers and thrust-to-weight ratio. Carbon fiber-reinforced ceramic composites, which generally meet the aforementioned requirements, show great potential for various applications and they have been widely applied in the thermal protection for hypersonic vehicles. This paper gives a comprehensive and systematic review of current research status for carbon fiber-reinforced ceramic composites applied in the thermal structure of advanced propulsion systems. Three aspects are presented and discussed: the ceramic composites fabrication and the property characterization, the thermal performance of composite thermal structure used in practical engines, and the numerical methods for predicting mechanical and thermal properties of composites as well as the physicochemical phenomenon in the cooling channels. Firstly, the main manufacturing processes for the carbon-reinforced ceramic composites are presented and the corresponding advantages and disadvantages are analyzed. The high-temperature oxidation and ablation behaviors of composites are demonstrated and the improvement of oxidation and ablation resistance by introducing the ultra-high-temperature ceramics into C/C composites is discussed in detail. Then, several typical applications of carbon fiber-reinforced ceramic composites (mainly C/SiC), including the work of RCI, JAXA and NASA, have been reviewed and analyzed. After that, the current research status of macroscale equivalent and multiscale numerical methods for predicting the mechanical and thermal properties of composites as well as the complex physicochemical phenomenon occurring in hydrocarbon fuels are sorted out. Finally, several potential prospects are pointed out for the future research on the thermal protection of advanced propulsion systems based on the carbon fiber-reinforced ceramic composites.

12.
J Exp Bot ; 73(8): 2385-2402, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045165

RESUMEN

Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied. To this end, we report the genome-wide dynamics of H3K27me3 levels during FM arrest and the consequences of strongly depleted PcG activity on early flower morphogenesis including enlarged and indeterminate FMs. Strong depletion of H3K27me3 levels results in misexpression of the FM identity gene AGL24, which partially causes floral reversion leading to ap1-like flowers and indeterminate FMs ectopically expressing WUS and SHOOT MERISTEMLESS (STM). Loss of STM can rescue supernumerary floral organs and FM indeterminacy in H3K27me3-deficient flowers, indicating that the hyperactivity of the FMs is at least partially a result of ectopic STM expression. Nonetheless, WUS remained essential for the FM activity. Our results demonstrate that PcG proteins promote FM determinacy at multiple levels of the floral gene regulatory network, silencing initially floral regulators such as AGL24 that promotes FM indeterminacy and, subsequently, meristematic pluripotency genes such as WUS and STM during FM arrest.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Meristema/genética , Meristema/metabolismo
13.
Plant Cell Environ ; 44(4): 1178-1191, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32713005

RESUMEN

Herbivore-induced plant volatiles play important ecological roles in defense against stresses. However, if and which volatile(s) are involved in the plant-plant communication in response to herbivorous insects in tea plants remains unknown. Here, plant-plant communication experiments confirm that volatiles emitted from insects-attacked tea plants can trigger plant resistance and reduce the risk of herbivore damage by inducing jasmonic acid (JA) accumulation in neighboring plants. The emission of six compounds was significantly induced by geometrid Ectropis obliqua, one of the most common pests of the tea plant in China. Among them, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) could induce the accumulation of JA and thus promotes the resistance of neighboring intact plants to herbivorous insects. CsCYP82D47 was identified for the first time as a P450 enzyme, which catalyzes the final step in the biosynthesis of DMNT from (E)-nerolidol. Down-regulation of CsCYP82D47 in tea plants resulted in a reduced accumulation of DMNT and significantly reduced the release of DMNT in response to the feeding of herbivorous insects. The first evidence for plant-plant communication in response to herbivores in tea plants will help to understand how plants respond to volatile cues in response to herbivores and provide new insight into the role(s) of DMNT in tea plants.


Asunto(s)
Alquenos/metabolismo , Camellia sinensis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Oxilipinas/metabolismo , Defensa de la Planta contra la Herbivoria , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Camellia sinensis/genética , Camellia sinensis/fisiología , Clonación Molecular , Comunicación , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Larva , Mariposas Nocturnas , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Compuestos Orgánicos Volátiles/metabolismo
14.
Plant Cell Environ ; 44(11): 3667-3680, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34449086

RESUMEN

Herbivore-induced plant volatiles prime neighbouring plants to respond more strongly to subsequent attacks. However, the key volatiles that trigger this state and their priming mechanisms remain largely unknown. The tea geometrid Ectropis obliqua is one of the most devastating leaf-feeding pests of tea plants. Here, plant-plant communication experiments demonstrated that volatiles emitted from tea plants infested by E. obliqua larvae triggered neighbouring plants to release volatiles that repel E. obliqua adult, especially mated females. Volatile analyses revealed that the quantity of eight volatiles increased dramatically when plants were exposed to volatiles emitted by infested tea plants, including (Z)-3-hexenol, linalool, α-farnesene, ß-Ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). The results of behavioural bioassays demonstrated that ß-Ocimene strongly repelled mated E. obliqua females. Individual volatile compound exposure experiments revealed that (Z)-3-hexenol, linalool, α-farnesene and DMNT triggered the emission of ß-Ocimene from tea plants. Chemical inhibition experiments demonstrated that the emission of ß-Ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and DMNT were dependent on Ca2+ and JA signalling. These findings help us to understand how E. obliqua moths respond to volatiles emitted from tea plants and provide new insight into volatile-mediated plant-plant interactions. They have potential significance for the development of novel insect and pest control strategies in crops.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Alquenos/metabolismo , Camellia sinensis , Herbivoria , Mariposas Nocturnas/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Camellia sinensis/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Conducta Sexual Animal
15.
New Phytol ; 226(2): 362-372, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31828806

RESUMEN

Plants produce and emit terpenes, including sesquiterpenes, during growth and development, which serve different functions in plants. The sesquiterpene nerolidol has health-promoting properties and adds a floral scent to plants. However, the glycosylation mechanism of nerolidol and its biological roles in plants remained unknown. Sesquiterpene UDP-glucosyltransferases were selected by using metabolites-genes correlation analysis, and its roles in response to cold stress were studied. We discovered the first plant UGT (UGT91Q2) in tea plant, whose expression is strongly induced by cold stress and which specifically catalyzes the glucosylation of nerolidol. The accumulation of nerolidol glucoside was consistent with the expression level of UGT91Q2 in response to cold stress, as well as in different tea cultivars. The reactive oxygen species (ROS) scavenging capacity of nerolidol glucoside was significantly higher than that of free nerolidol. Down-regulation of UGT91Q2 resulted in reduced accumulation of nerolidol glucoside, ROS scavenging capacity and tea plant cold tolerance. Tea plants absorbed airborne nerolidol and converted it to its glucoside, subsequently enhancing tea plant cold stress tolerance. Nerolidol plays a role in response to cold stress as well as in triggering plant-plant communication in response to cold stress. Our findings reveal previously unidentified roles of volatiles in response to abiotic stress in plants.


Asunto(s)
Camellia sinensis , Glucosiltransferasas , Sesquiterpenos , Camellia sinensis/enzimología , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico ,
16.
J Exp Bot ; 71(22): 7018-7029, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32777072

RESUMEN

Uridine diphosphate (UDP)-dependent glycosyltransferases catalyse the glycosylation of small molecules and play important roles in maintaining cell homeostasis and regulating plant development. Glycosyltransferases are widely distributed, but their detailed roles in regulating plant growth and development are largely unknown. In this study, we identified a UDP-glycosyltransferase, UGT85A53, from Camellia sinensis, the expression of which was strongly induced by various abiotic stress factors and its protein product was distributed in both the cytoplasm and nucleus. Ectopic overexpression of CsUGT85A53 in Arabidopsis resulted in an early-flowering phenotype under both long- and short-day conditions. The transcript accumulation of the flowering repressor genes FLC and ABI5, an activator of FLC in ABA-regulated flowering signaling, were both significantly decreased in transgenic Arabidopsis compared with wild-type plants. The decreased expression level of FLC might be associated with an increased level of DNA methylation that was observed in CsUGT85A53-overexpressing (OE) plants. Biochemical analyses showed that CsUGT85A53 could glucosylate ABA to form inactive ABA-glycoside in vitro and in planta. Overexpression of CsUGT85A53 in Arabidopsis resulted in a decreased concentration of free ABA and increased concentration of ABA-glucoside. The early-flowering phenotype in the CsUGT85A53-OE transgenic lines was restored by ABA application. Furthermore, CsUGT85A53-OE plants displayed an ABA-insensitive phenotype with higher germination rates compared with controls in the presence of low concentrations of exogenous ABA. Our findings are the first to identify a UGT in tea plants that catalyses ABA glucosylation and enhance flowering transition as a positive regulator.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Camellia sinensis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
17.
Biochem Genet ; 58(6): 824-847, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32506157

RESUMEN

Orchardgrass (Dactylis glomerata L.) is drought resistant and tolerant to barren landscapes, making it one of the most important forages for animal husbandry, as well as ecological restoration of rocky landscapes that are undergoing desertification. However, orchardgrass is susceptible to rust, which can significantly reduce its yield and quality. Therefore, understanding the genes that underlie resistance against rust in orchardgrass is critical. The evolution, cloning of plant disease resistance genes, and the analysis of pathogenic bacteria induced expression patterns are important contents in the study of interaction between microorganisms and plants. Genes with nucleotide binding site (NBS) structure are disease-resistant genes ubiquitous in plants and play an important role in plant attacks against various pathogens. Using sequence analysis and re-annotation, we identified 413 NBS resistance genes in orchardgrass. Similar to previous studies, NBS resistance genes containing TIR (toll/interleukin-1 receptor) domain were not found in orchardgrass. The NBS resistance genes can be divided into four types: NBS (up to 264 homologous genes, accounting for 64% of the total number of NBS genes in orchardgrass), NBS-LRR, CC-NBS, and CC-NBS-LRR (minimum of 26 homologous genes, only 6% of the total number of NBS genes in orchardgrass). These 413 NBS resistance genes were unevenly distributed across seven chromosomes where chromosome 5 had up to 99 NBS resistance genes. There were 224 (54%) NBS resistance genes expressed in different tissues (roots, stems, leaves, flowers, and spikes), and we did not detect expression for 45 genes (11%). The remaining 145 (35%) were expressed in some tissues. And we found that 11 NBS resistance genes were differentially expressed under waterlogging stress, 5 NBS resistance genes were differentially expressed under waterlogging and drought stress, and 1 NBS resistance was is differentially expressed under waterlogging and heat stress. Most importantly, we found that 65 NBS resistance genes were significantly expressed in different control groups. On the 7th day of inoculation, 23 NBS resistance genes were differentially expressed in high resistance materials alone, of which 7 NBS resistance genes regulate the "plant-pathogen interaction" pathway by encoding RPM1. At the same time, 2 NBS resistance genes that were differentially expressed in the high resistance material after inoculation were also differentially expressed in abiotic stress. In summary, the NBS resistance gene plays a crucial role in the resistance of orchardgrass to rust.


Asunto(s)
Dactylis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estrés Fisiológico , Dactylis/genética , Dactylis/metabolismo
18.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963919

RESUMEN

Terpenoids play vital roles in tea aroma quality and plants defense performance determination, whereas the scenarios of genes to metabolites of terpenes pathway remain uninvestigated in tea plants. Here, we report the use of an integrated approach combining metabolites, target gene transcripts and function analyses to reveal a gene-to-terpene network in tea plants. Forty-one terpenes including 26 monoterpenes, 14 sesquiterpenes and one triterpene were detected and 82 terpenes related genes were identified from five tissues of tea plants. Pearson correlation analysis resulted in genes to metabolites network. One terpene synthases whose expression positively correlated with farnesene were selected and its function was confirmed involved in the biosynthesis of α-farnesene, ß-ocimene and ß-farnesene, a very important and conserved alarm pheromone in response to aphids by both in vitro enzymatic assay in planta function analysis. In summary, we provided the first reliable gene-to-terpene network for novel genes discovery.


Asunto(s)
Transferasas Alquil y Aril/genética , Camellia sinensis/enzimología , Proteínas de Plantas/genética , Terpenos/aislamiento & purificación , Monoterpenos Acíclicos/aislamiento & purificación , Alquenos/aislamiento & purificación , Transferasas Alquil y Aril/metabolismo , Camellia sinensis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Metabolómica , Proteínas de Plantas/metabolismo , Sesquiterpenos/aislamiento & purificación , Terpenos/química
19.
J Integr Plant Biol ; 62(10): 1461-1468, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32275096

RESUMEN

Plants have evolved sophisticated defense mechanisms to overcome their sessile nature. However, if and how volatiles from cold-stressed plants can trigger interplant communication is still unknown. Here, we provide the first evidence for interplant communication via inducible volatiles in cold stress. The volatiles, including nerolidol, geraniol, linalool, and methyl salicylate, emitted from cold-stressed tea plants play key role(s) in priming cold tolerance of their neighbors via a C-repeat-binding factors-dependent pathway. The knowledge will help us to understand how plants respond to volatile cues in cold stress and agricultural ecosystems.


Asunto(s)
Camellia sinensis/metabolismo , Camellia sinensis/fisiología , Monoterpenos Acíclicos/metabolismo , Respuesta al Choque por Frío/fisiología , Salicilatos/metabolismo , Sesquiterpenos/metabolismo
20.
Plant Cell Environ ; 42(4): 1352-1367, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30421786

RESUMEN

Plants emit a variety of volatiles in response to herbivore attack, and (Z)-3-hexenol and its glycosides have been shown to function as defence compounds. Although the ability to incorporate and convert (Z)-3-hexenol to glycosides is widely conserved in plants, the enzymes responsible for the glycosylation of (Z)-3-hexenol remained unknown until today. In this study, uridine-diphosphate-dependent glycosyltransferase (UGT) candidate genes were selected by correlation analysis and their response to airborne (Z)-3-hexenol, which has been shown to be taken up by the tea plant. The allelic proteins UGT85A53-1 and UGT85A53-2 showed the highest activity towards (Z)-3-hexenol and are distinct from UGT85A53-3, which displayed a similar catalytic efficiency for (Z)-3-hexenol and nerol. A single amino acid exchange E59D enhanced the activity towards (Z)-3-hexenol, whereas a L445M mutation reduced the catalytic activity towards all substrates tested. Transient overexpression of CsUGT85A53-1 in tobacco significantly increased the level of (Z)-3-hexenyl glucoside. The functional characterization of CsUGT85A53 as a (Z)-3-hexenol UGT not only provides the foundation for the biotechnological production of (Z)-3-hexenyl glucoside but also delivers insights for the development of novel insect pest control strategies in tea plant and might be generally applicable to other plants.


Asunto(s)
Camellia sinensis/metabolismo , Hexanoles/metabolismo , Camellia sinensis/genética , Cromatografía de Gases y Espectrometría de Masas , Glicósidos/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA