Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phys Rev Lett ; 132(4): 043805, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335338

RESUMEN

Ring quantum cascade lasers have recently gained considerable attention, showing ultrastable frequency comb and soliton operation, thus opening a way to integrated spectrometers in the midinfrared and terahertz fingerprint regions. Thanks to a self-consistent Maxwell-Bloch model, we demonstrate, in excellent agreement with the experimental data, that a small but finite coupling between the counterpropagating waves arising from distributed backscattering is essential to stabilize the soliton solution.

2.
Opt Lett ; 42(21): 4406-4409, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088175

RESUMEN

We report on a multi-color fiber laser based on four-wave mixing (FWM) and stimulated Raman scattering (SRS), delivering rapidly wavelength switchable narrowband output at 1064, 1122, and 1186 nm. High-power pulses from a nanosecond pulsed fiber master oscillator power amplifier at 1064 nm are combined with 1122 nm of seed light for Raman amplification at the first Stokes order in a standard single-mode fiber. With increasing power, we observe a narrowband spectral component at 1186 nm, without any additional seed or resonator at this wavelength. We analyze this occurrence of a narrowband second Stokes order both experimentally and theoretically and suggest it is a result of FWM seeding of the SRS amplification in the fiber. We demonstrate that the wavelength shifting can be controlled electronically within microseconds for very rapid and even pulse-to-pulse wavelength changes. This wavelength conversion method can extend the spectral coverage of single-wavelength fiber lasers for biomedical imaging.

3.
Opt Express ; 24(20): 23232-23247, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828388

RESUMEN

The generation of frequency combs in the mid-infrared and terahertz regimes from compact and potentially cheap sources could have a strong impact on spectroscopy, as many molecules have their rotovibrational bands in this spectral range. Thus, quantum cascade lasers (QCLs) are the perfect candidates for comb generation in these portions of the electromagnetic spectrum. Here we present a theoretical model based on a full numerical solution of Maxwell-Bloch equations suitable for the simulation of such devices. We show that our approach captures the intricate interplay between four wave mixing, spatial hole burning, coherent tunneling and chromatic dispersion which are present in free running QCLs. We investigate the premises for the generation of QCL based terahertz combs. The simulated comb spectrum is in good agreement with experiment, and also the observed temporal pulse switching between high and low frequency components is reproduced. Furthermore, non-comb operation resulting in a complex multimode dynamics is investigated.

4.
Opt Express ; 23(2): 1670-8, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835923

RESUMEN

Based on self-consistent ensemble Monte Carlo simulations coupled to the optical field dynamics, we investigate the giant nonlinear susceptibility giving rise to terahertz difference frequency generation in quantum cascade laser structures. Specifically, the dependence on temperature, bias voltage and frequency is considered. It is shown that the optical nonlinearity is temperature insensitive and covers a broad spectral range, as required for widely tunable room temperature terahertz sources. The obtained results are consistent with available experimental data.

5.
Opt Lett ; 40(10): 2385-8, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393746

RESUMEN

We develop a theoretical model for Fourier domain mode-locked (FDML) lasers in a non-polarization-maintaining configuration, which is the most widely used type of FDML source. This theoretical approach is applied to analyze a widely wavelength-swept FDML setup, as used for picosecond pulse generation by temporal compression of the sweeps. We demonstrate that good agreement between simulation and experiment can only be obtained by including polarization effects due to fiber bending birefringence, polarization mode dispersion, and cross-phase modulation into the theoretical model. Notably, the polarization dynamics are shown to have a beneficial effect on the instantaneous linewidth, resulting in improved coherence and thus compressibility of the wavelength-swept FDML output.


Asunto(s)
Análisis de Fourier , Rayos Láser , Modelos Teóricos , Fenómenos Ópticos
6.
Opt Express ; 21(5): 6180-5, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482186

RESUMEN

We present an extended ensemble Monte Carlo approach, allowing for the self-consistent modeling of terahertz difference frequency generation in quantum cascade lasers. Our simulations are validated against available experimental data for a current room temperature design. Tera-hertz output powers in the mW range are predicted for ideal light extraction.

7.
Opt Express ; 19(9): 8802-7, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21643132

RESUMEN

We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.


Asunto(s)
Rayos Láser , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Fourier
8.
Opt Express ; 18(25): 25922-7, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21164938

RESUMEN

Based on a coupled simulation of carrier transport and optical cavity field, the intrinsic linewidth in resonant phonon terahertz quantum cascade lasers is self-consistently analyzed. For high power structures, values on the order of Hz are obtained. Thermal photons are found to play a considerable role at elevated temperatures. A linewidth enhancement factor of 0.5 is calculated for the investigated designs.


Asunto(s)
Rayos Láser , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Modelos Estadísticos , Método de Montecarlo , Teoría Cuántica , Radiación Terahertz
9.
PLoS One ; 15(3): e0230557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32203531

RESUMEN

Science depends heavily on reliable and easy-to-use software packages, such as mathematical libraries or data analysis tools. Developing such packages requires a lot of effort, which is too often avoided due to the lack of funding or recognition. In order to reduce the efforts required to create sustainable software packages, we present a project skeleton that ensures the best software engineering practices from the start of a project, or serves as reference for existing projects.


Asunto(s)
Programas Informáticos , Biología Computacional , Humanos , Internet , Investigación
10.
ACS Photonics ; 7(12): 3489-3498, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33365362

RESUMEN

The ability to engineer quantum-cascade-lasers (QCLs) with ultrabroad gain spectra, and with a full compensation of the group velocity dispersion, at terahertz (THz) frequencies, is key for devising monolithic and miniaturized optical frequency-comb-synthesizers (FCSs) in the far-infrared. In THz QCLs four-wave mixing, driven by intrinsic third-order susceptibility of the intersubband gain medium, self-locks the optical modes in phase, allowing stable comb operation, albeit over a restricted dynamic range (∼20% of the laser operational range). Here, we engineer miniaturized THz FCSs, comprising a heterogeneous THz QCL, integrated with a tightly coupled, on-chip, solution-processed, graphene saturable-absorber reflector that preserves phase-coherence between lasing modes, even when four-wave mixing no longer provides dispersion compensation. This enables a high-power (8 mW) FCS with over 90 optical modes, through 55% of the laser operational range. We also achieve stable injection-locking, paving the way to a number of key applications, including high-precision tunable broadband-spectroscopy and quantum-metrology.

11.
Light Sci Appl ; 9: 51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257182

RESUMEN

The use of fundamental modelocking to generate short terahertz (THz) pulses and THz frequency combs from semiconductor lasers has become a routine affair, using quantum cascade lasers (QCLs) as a gain medium. However, unlike classic laser diodes, no demonstrations of harmonic modelocking, active or passive, have been shown in THz QCLs, where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity's fundamental round-trip frequency. Here, using time-resolved THz techniques, we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency. We demonstrate the generation of the harmonic electrical beatnote within a QCL, its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach. Finally, we show indications of self-starting harmonic emission, i.e., without external modulation, where the QCL operates exclusively on a harmonic (up to its 15th harmonic) of the round-trip frequency. This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic, as well as photonic, nature of QCLs. These results open up the prospect of passive harmonic modelocking and THz pulse generation, as well as the generation of low-noise microwave generation in the hundreds of GHz region.

12.
Opt Express ; 17(26): 24013-9, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20052113

RESUMEN

The first theoretical model of Fourier domain mode locking operation is presented. A specially tailored dynamic equation in a moving spectral reference frame is derived, enabling efficient numerical treatment, despite the broad laser spectrum and the extremely long cavity. The excellent agreement of the presented theory with experiment over a wide range of operation parameters enables a quantitative assessment of the relevant physical effects, such as the spectral loss modulation and gain saturation dynamics, amplified spontaneous emission, linewidth enhancement, and self-phase modulation.


Asunto(s)
Rayos Láser , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Fourier , Luz , Dispersión de Radiación
13.
Biomed Opt Express ; 9(9): 4130-4148, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615700

RESUMEN

We investigate the origin of high frequency noise in Fourier domain mode locked (FDML) lasers and present an extremely well dispersion compensated setup which virtually eliminates intensity noise and dramatically improves coherence properties. We show optical coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive impact of the described improvements on the image quality. Especially in highly scattering samples, at specular reflections and for strong signals at large depth, the noise in optical coherence tomography images is significantly reduced. We also describe a simple model that suggests a passive physical stabilizing mechanism that leads to an automatic compensation of remaining cavity dispersion in FDML lasers.

14.
Biomed Opt Express ; 6(7): 2448-65, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26203373

RESUMEN

We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell's equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth.

15.
Nat Commun ; 4: 1848, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673633

RESUMEN

Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

16.
ACS Nano ; 6(3): 2853-9, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22385160

RESUMEN

Nanoscale metal-insulator-metal (MIM) diodes represent important devices in the fields of electronic circuits, detectors, communication, and energy, as their cutoff frequencies may extend into the "gap" between the electronic microwave range and the optical long-wave infrared regime. In this paper, we present a nanotransfer printing method, which allows the efficient and simultaneous fabrication of large-scale arrays of MIM nanodiode stacks, thus offering the possibility of low-cost mass production. In previous work, we have demonstrated the successful transfer and electrical characterization of macroscopic structures. Here, we demonstrate for the first time the fabrication of several millions of nanoscale diodes with a single transfer-printing step using a temperature-enhanced process. The electrical characterization of individual MIM nanodiodes was performed using a conductive atomic force microscope (AFM) setup. Our analysis shows that the tunneling current is the dominant conduction mechanism, and the electrical measurement data agree well with experimental data on previously fabricated microscale diodes and numerical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA