Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 142(1): 77-88, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603016

RESUMEN

Cytotoxicity of cisplatin and mitomycin C (MMC) is ascribed largely to their ability to generate interstrand crosslinks (ICLs) in DNA, which block the progression of replication forks. The processing of ICLs requires the Fanconi anemia (FA) pathway, excision repair, and translesion DNA synthesis (TLS). It also requires homologous recombination (HR), which repairs double-strand breaks (DSBs) generated by cleavage of the blocked replication forks. Here we describe KIAA1018, an evolutionarily conserved protein that has an N-terminal ubiquitin-binding zinc finger (UBZ) and a C-terminal nuclease domain. KIAA1018 is a 5'-->3' exonuclease and a structure-specific endonuclease that preferentially incises 5' flaps. Like cells from FA patients, human cells depleted of KIAA1018 are sensitized to ICL-inducing agents and display chromosomal instability. The link of KIAA1018 to the FA pathway is further strengthened by its recruitment to DNA damage through interaction of its UBZ domain with monoubiquitylated FANCD2. We therefore propose to name KIAA1018 FANCD2-associated nuclease, FAN1.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Mitomicina/farmacología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Línea Celular , Roturas del ADN de Doble Cadena , Daño del ADN/efectos de los fármacos , Endodesoxirribonucleasas , Endonucleasas/metabolismo , Exodesoxirribonucleasas/química , Humanos , Datos de Secuencia Molecular , Enzimas Multifuncionales , Fosfodiesterasa I/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia
2.
Cell ; 135(7): 1167-9, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19109887

RESUMEN

Whether 5-methylcytosine (meC) can be enzymatically removed from vertebrate DNA has been the subject of extensive study and also some controversy. Rai et al. (2008) now report that cytosine demethylation can be accomplished in a one-cell zebrafish embryo by the combined action of a cytidine deaminase and a thymine DNA glycosylase.


Asunto(s)
Citosina/metabolismo , Metilación de ADN , Animales , Citidina Desaminasa/metabolismo , Timina ADN Glicosilasa/metabolismo , Pez Cebra
3.
Nucleic Acids Res ; 48(9): 4928-4939, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32297953

RESUMEN

Replication factor C (RFC), a heteropentamer of RFC1-5, loads PCNA onto DNA during replication and repair. Once DNA synthesis has ceased, PCNA must be unloaded. Recent findings assign the uloader role primarily to an RFC-like (RLC) complex, in which the largest RFC subunit, RFC1, has been replaced with ATAD5 (ELG1 in Saccharomyces cerevisiae). ATAD5-RLC appears to be indispensable, given that Atad5 knock-out leads to embryonic lethality. In order to learn how the retention of PCNA on DNA might interfere with normal DNA metabolism, we studied the response of ATAD5-depleted cells to several genotoxic agents. We show that ATAD5 deficiency leads to hypersensitivity to methyl methanesulphonate (MMS), camptothecin (CPT) and mitomycin C (MMC), agents that hinder the progression of replication forks. We further show that ATAD5-depleted cells are sensitive to poly(ADP)ribose polymerase (PARP) inhibitors and that the processing of spontaneous oxidative DNA damage contributes towards this sensitivity. We posit that PCNA molecules trapped on DNA interfere with the correct metabolism of arrested replication forks, phenotype reminiscent of defective homologous recombination (HR). As Atad5 heterozygous mice are cancer-prone and as ATAD5 mutations have been identified in breast and endometrial cancers, our finding may open a path towards the therapy of these tumours.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Antineoplásicos/farmacología , Daño del ADN , Proteínas de Unión al ADN/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Pollos , Cromatina/enzimología , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Mutágenos/toxicidad , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
4.
Mol Cell ; 50(3): 323-32, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23603115

RESUMEN

To improve replication fidelity, mismatch repair (MMR) must detect non-Watson-Crick base pairs and direct their repair to the nascent DNA strand. Eukaryotic MMR in vitro requires pre-existing strand discontinuities for initiation; consequently, it has been postulated that MMR in vivo initiates at Okazaki fragment termini in the lagging strand and at nicks generated in the leading strand by the mismatch-activated MLH1/PMS2 endonuclease. We now show that a single ribonucleotide in the vicinity of a mismatch can act as an initiation site for MMR in human cell extracts and that MMR activation in this system is dependent on RNase H2. As loss of RNase H2 in S.cerevisiae results in a mild MMR defect that is reflected in increased mutagenesis, MMR in vivo might also initiate at RNase H2-generated nicks. We therefore propose that ribonucleotides misincoporated during DNA replication serve as physiological markers of the nascent DNA strand.


Asunto(s)
Disparidad de Par Base , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Replicación del ADN/genética , ADN/genética , Ribonucleótidos/genética , Animales , Sistema Libre de Células , Células Cultivadas , ADN/metabolismo , Células HEK293 , Humanos , Ratones , Mutagénesis/genética , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 47(17): 9132-9143, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31329989

RESUMEN

Poly(ADP-ribose) polymerases (PARPs) facilitate the repair of DNA single-strand breaks (SSBs). When PARPs are inhibited, unrepaired SSBs colliding with replication forks give rise to cytotoxic double-strand breaks. These are normally rescued by homologous recombination (HR), but, in cells with suboptimal HR, PARP inhibition leads to genomic instability and cell death, a phenomenon currently exploited in the therapy of ovarian cancers in BRCA1/2 mutation carriers. In spite of their promise, resistance to PARP inhibitors (PARPis) has already emerged. In order to identify the possible underlying causes of the resistance, we set out to identify the endogenous source of DNA damage that activates PARPs. We argued that if the toxicity of PARPis is indeed caused by unrepaired SSBs, these breaks must arise spontaneously, because PARPis are used as single agents. We now show that a significant contributor to PARPi toxicity is oxygen metabolism. While BRCA1-depleted or -mutated cells were hypersensitive to the clinically approved PARPi olaparib, its toxicity was significantly attenuated by depletion of OGG1 or MYH DNA glycosylases, as well as by treatment with reactive oxygen species scavengers, growth under hypoxic conditions or chemical OGG1 inhibition. Thus, clinical resistance to PARPi therapy may emerge simply through reduced efficiency of oxidative damage repair.


Asunto(s)
Proteína BRCA1/genética , ADN Glicosilasas/genética , Neoplasias Ováricas/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasas/genética , Línea Celular Tumoral , Roturas del ADN de Cadena Simple/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Glicosilasas/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Femenino , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Oxidación-Reducción/efectos de los fármacos , Ftalazinas/efectos adversos , Ftalazinas/farmacología , Piperazinas/efectos adversos , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Mutaciones Letales Sintéticas/genética
6.
Mol Cell ; 47(5): 669-80, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22864113

RESUMEN

Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutagenesis and rearrangements. In an attempt to elucidate the mechanism underlying the latter events, we set out to search for conditions that compromise MMR fidelity. Here, we describe noncanonical MMR (ncMMR), a process in which the MMR pathway is activated by various DNA lesions rather than by mispairs. ncMMR is largely independent of DNA replication, lacks strand directionality, triggers PCNA monoubiquitylation, and promotes recruitment of the error-prone polymerase-η to chromatin. Importantly, ncMMR is not limited to B cells but occurs also in other cell types. Moreover, it contributes to mutagenesis induced by alkylating agents. Activation of ncMMR may therefore play a role in genomic instability and cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Inestabilidad Genómica/genética , Células Cultivadas , Replicación del ADN , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo
8.
Nucleic Acids Res ; 44(6): 2691-705, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26743004

RESUMEN

During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and -deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.


Asunto(s)
Linfocitos B/metabolismo , Reparación de la Incompatibilidad de ADN/inmunología , ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/genética , Uracilo/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Línea Celular Tumoral , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Citosina/inmunología , Citosina/metabolismo , ADN/inmunología , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Células HEK293 , Humanos , Transducción de Señal , Uracilo/inmunología , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/inmunología
9.
Nucleic Acids Res ; 44(14): 6770-86, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27174933

RESUMEN

DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied the effect of strand incision on unwinding and excision activity. The distance between mismatch and GATC site did not influence the strand incision rate, and an increase in the number of sites enhanced incision only to a minor extent. Two GATC sites were incised by the same activated MMR complex in a processive manner, with MutS, the closed form of MutL and MutH displaying different roles. Unwinding and strand excision were more efficient on a substrate with two nicks flanking the mismatch, as compared to substrates containing a single nick or two nicks on the same side of the mismatch. Introduction of multiple nicks by the human MutLα endonuclease also contributed to increased repair efficiency. Our data support a general model of prokaryotic and eukaryotic MMR in which, despite mechanistic differences, mismatch-activated complexes facilitate efficient repair by creating multiple daughter strand nicks.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Disparidad de Par Base/genética , Secuencia de Bases , Metilación de ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Conformación Proteica
10.
Nature ; 470(7334): 419-23, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21278727

RESUMEN

Thymine DNA glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily of DNA repair enzymes. Owing to its ability to excise thymine when mispaired with guanine, it was proposed to act against the mutability of 5-methylcytosine (5-mC) deamination in mammalian DNA. However, TDG was also found to interact with transcription factors, histone acetyltransferases and de novo DNA methyltransferases, and it has been associated with DNA demethylation in gene promoters following activation of transcription, altogether implicating an engagement in gene regulation rather than DNA repair. Here we use a mouse genetic approach to determine the biological function of this multifaceted DNA repair enzyme. We find that, unlike other DNA glycosylases, TDG is essential for embryonic development, and that this phenotype is associated with epigenetic aberrations affecting the expression of developmental genes. Fibroblasts derived from Tdg null embryos (mouse embryonic fibroblasts, MEFs) show impaired gene regulation, coincident with imbalanced histone modification and CpG methylation at promoters of affected genes. TDG associates with the promoters of such genes both in fibroblasts and in embryonic stem cells (ESCs), but epigenetic aberrations only appear upon cell lineage commitment. We show that TDG contributes to the maintenance of active and bivalent chromatin throughout cell differentiation, facilitating a proper assembly of chromatin-modifying complexes and initiating base excision repair to counter aberrant de novo methylation. We thus conclude that TDG-dependent DNA repair has evolved to provide epigenetic stability in lineage committed cells.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética/genética , Genes Letales/genética , Fenotipo , Timina ADN Glicosilasa/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN , Reparación del ADN , Embrión de Mamíferos/enzimología , Fibroblastos/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Esenciales/genética , Histonas/metabolismo , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Timina ADN Glicosilasa/deficiencia , Timina ADN Glicosilasa/genética
11.
Trends Biochem Sci ; 37(5): 206-14, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22475811

RESUMEN

A considerable surge of interest in the mismatch repair (MMR) system has been brought about by the discovery of a link between Lynch syndrome, an inherited predisposition to cancer of the colon and other organs, and malfunction of this key DNA metabolic pathway. This review focuses on recent advances in our understanding of the molecular mechanisms of canonical MMR, which improves replication fidelity by removing misincorporated nucleotides from the nascent DNA strand. We also discuss the involvement of MMR proteins in two other processes: trinucleotide repeat expansion and antibody maturation, in which MMR proteins are required for mutagenesis rather than for its prevention.


Asunto(s)
Disparidad de Par Base/genética , Reparación de la Incompatibilidad de ADN , Replicación del ADN/genética , Mamíferos/genética , Animales , ADN/genética , Humanos , Modelos Genéticos , Expansión de Repetición de Trinucleótido/genética
12.
J Biol Chem ; 290(37): 22602-11, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26221031

RESUMEN

Cisplatin and its derivatives, nitrogen mustards and mitomycin C, are used widely in cancer chemotherapy. Their efficacy is linked primarily to their ability to generate DNA interstrand cross-links (ICLs), which effectively block the progression of transcription and replication machineries. Release of this block, referred to as unhooking, has been postulated to require endonucleases that incise one strand of the duplex on either side of the ICL. Here we investigated how the 5' flap nucleases FANCD2-associated nuclease 1 (FAN1), exonuclease 1 (EXO1), and flap endonuclease 1 (FEN1) process a substrate reminiscent of a replication fork arrested at an ICL. We now show that EXO1 and FEN1 cleaved the substrate at the boundary between the single-stranded 5' flap and the duplex, whereas FAN1 incised it three to four nucleotides in the double-stranded region. This affected the outcome of processing of a substrate containing a nitrogen mustard-like ICL two nucleotides in the duplex region because FAN1, unlike EXO1 and FEN1, incised the substrate predominantly beyond the ICL and, therefore, failed to release the 5' flap. We also show that FAN1 was able to degrade a linear ICL substrate. This ability of FAN1 to traverse ICLs in DNA could help to elucidate its biological function, which is currently unknown.


Asunto(s)
Enzimas Reparadoras del ADN/química , ADN/química , Exodesoxirribonucleasas/química , Endonucleasas de ADN Solapado/química , Línea Celular , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Humanos , Enzimas Multifuncionales , Especificidad por Sustrato
13.
J Biol Chem ; 290(16): 9986-99, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25694431

RESUMEN

Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR.


Asunto(s)
Disparidad de Par Base , ADN Glicosilasas/genética , Reparación de la Incompatibilidad de ADN , Guanina/análogos & derivados , Purinas/metabolismo , Xenopus laevis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/química , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Guanina/metabolismo , Guanina/farmacología , Células HCT116 , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Datos de Secuencia Molecular , Proteínas MutL , Oocitos/citología , Oocitos/metabolismo , Oxidación-Reducción , Purinas/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo
14.
Nucleic Acids Res ; 42(11): 7096-103, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24829445

RESUMEN

Mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1 and PMS2 are associated with Lynch Syndrome (LS), a familial predisposition to early-onset cancer of the colon and other organs. Because not all LS families carry mutations in these four genes, the search for cancer-associated mutations was extended to genes encoding other members of the mismatch repairosome. This effort identified mutations in EXO1, which encodes the sole exonuclease implicated in MMR. One of these mutations, E109K, was reported to abrogate the catalytic activity of the enzyme, yet, in the crystal structure of the EXO1/DNA complex, this glutamate is far away from both DNA and the catalytic site of the enzyme. In an attempt to elucidate the reason underlying the putative loss of function of this variant, we expressed it in Escherichia coli, and tested its activity in a series of biochemical assays. We now report that, contrary to earlier reports, and unlike the catalytic site mutant D173A, the EXO1 E109K variant resembled the wild-type (wt) enzyme on all tested substrates. In the light of our findings, we attempt here to reinterpret the results of the phenotypic characterization of a knock-in mouse carrying the E109K mutation and cells derived from it.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas/genética , Mutación Missense , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/genética
15.
Nucleic Acids Res ; 41(5): 3032-46, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23314153

RESUMEN

The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a 'homeologous' recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6(-/-) and Pms2(-/-) DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of 'homeologous' recombination insensitive to MMR.


Asunto(s)
Pollos/genética , Citidina Desaminasa/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/deficiencia , Conversión Génica , Inmunoglobulinas/genética , Uracilo/metabolismo , Animales , Apoptosis , Ciclo Celular , Línea Celular , Forma del Núcleo Celular , Proliferación Celular , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Recombinación Homóloga
16.
Proc Natl Acad Sci U S A ; 109(6): 1895-900, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22232658

RESUMEN

Single strand nicks and gaps in DNA have been reported to increase the efficiency of nucleosome loading mediated by chromatin assembly factor 1 (CAF-1). However, on mismatch-containing substrates, these strand discontinuities are utilized by the mismatch repair (MMR) system as loading sites for exonuclease 1, at which degradation of the error-containing strand commences. Because packaging of DNA into chromatin might inhibit MMR, we were interested to learn whether chromatin assembly is differentially regulated on heteroduplex and homoduplex substrates. We now show that the presence of a mismatch in a nicked plasmid substrate delays nucleosome loading in human cell extracts. Our data also suggest that, once the mismatch is removed, repair of the single-stranded gap is accompanied by efficient nucleosome loading. We postulated that the balance between MMR and chromatin assembly might be governed by proliferating cell nuclear antigen (PCNA), the processivity factor of replicative DNA polymerases, which is loaded at DNA termini and which interacts with the MSH6 subunit of the mismatch recognition factor MutSα, as well as with CAF-1. We now show that this regulation might be more complex; MutSα and CAF-1 interact not only with PCNA, but also with each other. In vivo this interaction increases during S-phase and may be controlled by the phosphorylation status of the p150 subunit of CAF-1.


Asunto(s)
Ensamble y Desensamble de Cromatina , Reparación de la Incompatibilidad de ADN , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Daño del ADN , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Nucleosomas/metabolismo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Fase S
17.
J Cell Sci ; 125(Pt 4): 1048-57, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22399800

RESUMEN

The LEM domain (for lamina-associated polypeptide, emerin, MAN1 domain) defines a group of nuclear proteins that bind chromatin through interaction of the LEM motif with the conserved DNA crosslinking protein, barrier-to-autointegration factor (BAF). Here, we describe a LEM protein annotated in databases as 'Ankyrin repeat and LEM domain-containing protein 1' (Ankle1). We show that Ankle1 is conserved in metazoans and contains a unique C-terminal GIY-YIG motif that confers endonuclease activity in vitro and in vivo. In mammals, Ankle1 is predominantly expressed in hematopoietic tissues. Although most characterized LEM proteins are components of the inner nuclear membrane, ectopic Ankle1 shuttles between cytoplasm and nucleus. Ankle1 enriched in the nucleoplasm induces DNA cleavage and DNA damage response. This activity requires both the catalytic C-terminal GIY-YIG domain and the LEM motif, which binds chromatin via BAF. Hence, Ankle1 is an unusual LEM protein with a GIY-YIG-type endonuclease activity in higher eukaryotes.


Asunto(s)
División del ADN , Endonucleasas/química , Endonucleasas/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Secuencia Conservada , Citoplasma/metabolismo , Daño del ADN , Endonucleasas/análisis , Endonucleasas/genética , Perfilación de la Expresión Génica , Sistema Hematopoyético/metabolismo , Humanos , Inmunoprecipitación , Especificidad de Órganos , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Transporte de Proteínas , Transducción de Señal
18.
BMC Cancer ; 14: 46, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24472434

RESUMEN

BACKGROUND: Biological processes are controlled by transcription networks. Expression changes of transcription factor (TF) genes in precancerous lesions are therefore crucial events in tumorigenesis. Our aim was to obtain a comprehensive picture of these changes in colorectal adenomas. METHODS: Using a 3-pronged selection procedure, we analyzed transcriptomic data on 34 human tissue samples (17 adenomas and paired samples of normal mucosa, all collected with ethics committee approval and written, informed patient consent) to identify TFs with highly significant tumor-associated gene expression changes whose potential roles in colorectal tumorigenesis have been under-researched. Microarray data were subjected to stringent statistical analysis of TF expression in tumor vs. normal tissues, MetaCore-mediated identification of TF networks displaying enrichment for genes that were differentially expressed in tumors, and a novel quantitative analysis of the publications examining the TF genes' roles in colorectal tumorigenesis. RESULTS: The 261 TF genes identified with this procedure included DACH1, which plays essential roles in the proper proliferation and differentiation of retinal and leg precursor cell populations in Drosophila melanogaster. Its possible roles in colorectal tumorigenesis are completely unknown, but it was found to be markedly overexpressed (mRNA and protein) in all colorectal adenomas and in most colorectal carcinomas. However, DACH1 expression was absent in some carcinomas, most of which were DNA mismatch-repair deficient. When networks were built using the set of TF genes identified by all three selection procedures, as well as the entire set of transcriptomic changes in adenomas, five hub genes (TGFB1, BIRC5, MYB, NR3C1, and TERT) where identified as putatively crucial components of the adenomatous transformation process. CONCLUSION: The transcription-regulating network of colorectal adenomas (compared with that of normal colorectal mucosa) is characterized by significantly altered expression of over 250 TF genes, many of which have never been investigated in relation to colorectal tumorigenesis.


Asunto(s)
Adenoma/genética , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Adenoma/metabolismo , Adenoma/patología , Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Análisis por Conglomerados , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genes myb , Humanos , Inmunohistoquímica , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Survivin , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
19.
Nucleic Acids Res ; 40(18): 8953-64, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22810206

RESUMEN

DNA interstrand crosslinks (ICLs) formed by antitumor agents, such as cisplatin or mitomycin C, are highly cytotoxic DNA lesions. Their repair is believed to be triggered primarily by the stalling of replication forks at ICLs in S-phase. There is, however, increasing evidence that ICL repair can also occur independently of replication. Using a reporter assay, we describe a pathway for the repair of cisplatin ICLs that depends on transcription-coupled nucleotide excision repair protein CSB, the general nucleotide excision repair factors XPA, XPF and XPG, but not the global genome nucleotide excision repair factor XPC. In this pathway, Rev1 and Polζ are involved in the error-free bypass of cisplatin ICLs. The requirement for CSB, Rev1 or Polζ is specific for the repair of ICLs, as the repair of cisplatin intrastrand crosslinks does not require these genes under identical conditions. We directly show that this pathway contributes to the removal of ICLs outside of S-phase. Finally, our studies reveal that defects in replication- and transcription-dependent pathways are additive in terms of cellular sensitivity to treatment with cisplatin or mitomycin C. We conclude that transcription- and replication-dependent pathways contribute to cellular survival following treatment with crosslinking agents.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Reactivos de Enlaces Cruzados/toxicidad , Reparación del ADN , Nucleotidiltransferasas/fisiología , Transcripción Genética , Animales , Antineoplásicos/química , Línea Celular , Cisplatino/química , Cricetinae , Cricetulus , Reactivos de Enlaces Cruzados/química , ADN/biosíntesis , Aductos de ADN/química , Daño del ADN , Reparación de la Incompatibilidad de ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Recombinación Homóloga , Humanos , Ratones , Plásmidos/genética
20.
Proc Natl Acad Sci U S A ; 108(16): 6492-6, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21464321

RESUMEN

Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this heterodimer recruits downstream members of the ICL repairosome, including the FAN1 nuclease. However, ICL processing has been shown to also involve MUS81-EME1 and XPF-ERCC1, nucleases known to interact with SLX4, a docking protein that also can bind another nuclease, SLX1. To investigate the role of SLX4 more closely, we disrupted the SLX4 gene in avian DT40 cells. SLX4 deficiency caused cell death associated with extensive chromosomal aberrations, including a significant fraction of isochromatid-type breaks, with sister chromatids broken at the same site. SLX4 thus appears to play an essential role in cell proliferation, probably by promoting the resolution of interchromatid homologous recombination intermediates. Because ubiquitylation plays a key role in the FA pathway, and because the N-terminal region of SLX4 contains a ubiquitin-binding zinc finger (UBZ) domain, we asked whether this domain is required for ICL processing. We found that SLX4(-/-) cells expressing UBZ-deficient SLX4 were selectively sensitive to ICL-inducing agents, and that the UBZ domain was required for interaction of SLX4 with ubiquitylated FANCD2 and for its recruitment to DNA-damage foci generated by ICL-inducing agents. Our findings thus suggest that ubiquitylated FANCD2 recruits SLX4 to DNA damage sites, where it mediates the resolution of recombination intermediates generated during the processing of ICLs.


Asunto(s)
Reparación del ADN/fisiología , Endonucleasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Recombinasas/metabolismo , Recombinación Genética/fisiología , Ubiquitinación/fisiología , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Pollos , Cromátides/genética , Cromátides/metabolismo , Aberraciones Cromosómicas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Reparación del ADN/efectos de los fármacos , Endonucleasas/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Recombinasas/genética , Recombinación Genética/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA