Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genes Dev ; 28(20): 2276-90, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319828

RESUMEN

Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI-FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.


Asunto(s)
Exodesoxirribonucleasas/química , Modelos Moleculares , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimología , Dominio Catalítico , Cristalización , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína
2.
EMBO J ; 35(7): 743-58, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26717941

RESUMEN

ATP-dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double-strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here,Methanococcus jannaschii MR-ATPγS-DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATPγS-bound Rad50 nucleotide-binding domains. Duplex DNA cannot access the Mre11 active site in the ATP-free full-length MR complex. ATP hydrolysis drives rotation of the nucleotide-binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis-driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Arqueales/metabolismo , ADN/metabolismo , Methanococcus/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , ADN/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
3.
EMBO J ; 33(9): 1061-72, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24733841

RESUMEN

The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3' flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a "5' end binding pocket" that hosts the 5' nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3' flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5' flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3' flap DNA substrates with 5' nicked ends.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Endodesoxirribonucleasas/química , Endonucleasas/química , Región de Flanqueo 5' , Cristalografía por Rayos X , Roturas del ADN de Cadena Simple , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
4.
J Mol Biol ; 434(2): 167370, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34838521

RESUMEN

Phosphatidylinositol 3-kinase-related protein kinases (PIKKs) play critical roles in various metabolic pathways related to cell proliferation and survival. The TELO2-TTI1-TTI2 (TTT) complex has been proposed to recognize newly synthesized PIKKs and to deliver them to the R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) and the heat shock protein 90 chaperone, thereby supporting their folding and assembly. Here, we determined the cryo-EM structure of the TTT complex at an average resolution of 4.2 Å. We describe the full-length structures of TTI1 and TELO2, and a partial structure of TTI2. All three proteins form elongated helical repeat structures. TTI1 provides a platform on which TELO2 and TTI2 bind to its central region and C-terminal end, respectively. The TELO2 C-terminal domain (CTD) is required for the interaction with TTI1 and recruitment of Ataxia-telangiectasia mutated (ATM). The N- and C-terminal segments of TTI1 recognize the FRAP-ATM-TRRAP (FAT) domain and the N-terminal HEAT repeats of ATM, respectively. The TELO2 CTD and TTI1 N- and C-terminal segments are required for cell survival in response to ionizing radiation.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras , Microscopía por Crioelectrón , ADN Helicasas , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas Nucleares , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión a Telómeros/genética
5.
J Mol Biol ; 433(9): 166910, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33676928

RESUMEN

The Smc5/6 complex facilitates chromosome replication and DNA break repair. Within this complex, a subcomplex composed of Nse1, Nse3 and Nse4 is thought to play multiple roles through DNA binding and regulating ATP-dependent activities of the complex. However, how the Nse1-Nse3-Nse4 subcomplex carries out these multiple functions remain unclear. To address this question, we determine the crystal structure of the Xenopus laevis Nse1-Nse3-Nse4 subcomplex at 1.7 Å resolution and examine how it interacts with DNA. Our structural analyses show that the Nse1-Nse3 dimer adopts a closed conformation and forms three interfaces with a segment of Nse4, forcing it into a Z-shaped conformation. The Nse1-Nse3-Nse4 structure provides an explanation for how the lung disease immunodeficiency and chromosome breakage syndrome-causing mutations could dislodge Nse4 from Nse1-Nse3. Our DNA binding and mutational analyses reveal that the N-terminal and the middle region of Nse4 contribute to DNA interaction and cell viability. Integrating our data with previous crosslink mass spectrometry data, we propose potential roles of the Nse1-Nse3-Nse4 complex in binding DNA within the Smc5/6 complex.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Multimerización de Proteína , Proteínas de Xenopus/química , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/metabolismo , Rotura Cromosómica , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Síndromes de Inmunodeficiencia/genética , Enfermedades Pulmonares/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Células Procariotas/química , Células Procariotas/metabolismo , Conformación Proteica , Pliegue de Proteína , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA